[1] Altan, S.: Existence in nonlocal elasticity. Arch. Mech. 47 (1989), 25–36.
[2] Bažant, Z.P.: Why continuum damage is nonlocal: micromechanics arguments. J. Eng. Mech. 117 (1991), 1070–1089.
[3] Bermúdez de Castro, A.:
Continuum Thermomechanics. Birkhäuser, Basel, 2005.
MR 2145925
[4] Bybordiani, M., Dias da Costa, D.:
A consistent finite element approach for dynamic crack propagation with explicit time integration. Comput. Methods Appl. Mech. Eng. 376 (2021), 1–32, 113652.
DOI 10.1016/j.cma.2020.113652 |
MR 4200540
[5] de Vree, J.H.P., Brekelmans, W.A.M., van Gils, M.A.J.:
Comparison of nonlocal approaches in continuum damage mechanics. Comput. Struct. 55 (1995), 581–588.
DOI 10.1016/0045-7949(94)00501-S
[6] Drábek, P., Milota, I.:
Methods of Nonlinear Analysis. Birkhäuser, Basel, 2013.
MR 3025694
[7] Eringen, A.C.: Theory of Nonlocal Elasticity and Some Applications. Tech. report, Princeton University, Princeton, 1984.
[9] Fasshauer, G.E., Ye, Q.:
Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators. Numer. Math. 119 (2011), 585–611.
DOI 10.1007/s00211-011-0391-2 |
MR 2845629
[10] Fries, T.P., Belytschko, T.:
The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns. Int. J. Numer. Methods Eng. 68 (2006), 1358–1385.
DOI 10.1002/nme.1761
[12] Hashiguchi, K.:
Elastoplasticity Theory. Springer Berlin, 2014.
MR 3235845
[13] Havlásek, P., Grassl, P., Jirásek, M.:
Analysis of size effect on strength of quasi-brittle materials using integral-type nonlocal models. Eng. Fract. Mech. 157 (2016), 72–85.
DOI 10.1016/j.engfracmech.2016.02.029
[14] Ju, J.W.: Isotropic and anisotropic damage variables in continuum damage. J. Eng. Mech. 116 (1990), 2764–2770.
[15] Kamińska, I., Szwed, A.: A thermodynamically consistent model of quasibrittle elastic damaged materials based on a novel Helmholtz potential and dissipation function. MDPI Materials 14 (2021), 1–30, 6323.
[16] Kozák, V., Chlup, Z., Padělek, P., Dlouhá, I.:
Prediction of the traction separation law of ceramics using iterative finite element modelling. Solid State Phenomena 258 (2017), 186–189.
DOI 10.4028/www.scientific.net/SSP.258.186
[17] Li, H., Li, J., Yuan, H.:
A review of the extended finite element method on macrocrack and microcrack growth simulations. Theor. Appl. Fract. Mech. 97 (2018), 236–249.
DOI 10.1016/j.tafmec.2018.08.008
[18] Mariani, S., Perego, U.:
Extended finite element method for quasi-brittle fracture. Int. J. Numer. Meth. Engn. 58 (2003), 103–126.
DOI 10.1002/nme.761 |
MR 1999981
[19] Mielke, A., Roubíček, T.:
Rate-Independent Systems. Springer, New York, 2015.
MR 3380972
[20] Mousavi, S.M.:
Dislocation-based fracture mechanics within nonlocal and gradient elasticity of bi-Helmholtz type. Int. J. Solids Struct. 87 (2016), 92–93, 105–120.
DOI 10.1016/j.ijsolstr.2015.10.033
[21] Peerlings, R.H.J., R.de Borst, , Brekelmans, W.A.M., Geers, M.: Gradient enhanced damage modelling of concrete fracture. Int. J. Numer. Anal. Methods Geomech. 3 (1998), 323–342.
[22] Pijaudier-Cabot, G., Mazars, J.: Damage models for concrete. Handbook of Materials Behavior Models (Lemaitre, J., ed.), Academic Press, Cambridge (Massachusetts, USA), 2001, pp. 500–512.
[23] Pike, M.G., Oskay, C.:
XFEM modeling of short microfiber reinforced composites with cohesive interfaces. Finite Elem. Anal. Des. 106 (2015), 16–31.
DOI 10.1016/j.finel.2015.07.007
[24] Roubíček, T.:
Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2005.
MR 2176645
[25] Skala, V.:
A practical use of radial basis functions interpolation and approximation. Investigación Operacional 37 (2016), 137–144.
MR 3479842
[26] Štekbauer, H., Němec, I., Lang, R., Burkart, D., ValaSte22, J.:
On a new computational algorithm for impacts of elastic bodies. Appl. Math. 67 (2022), 28 pp., in print.
DOI 10.21136/AM.2022.0129-21 |
MR 4505704
[27] Sumi, Y.:
Mathematical and Computational Analyses of Cracking Formation. Springer, Tokyo, 2014.
MR 3234571
[28] Sun, Y., Edwards, M.G., Chen, B., Li, C.: A state-of-the-art review of crack branching. Eng. Fract. Mech. 257 (2021), 1–33, 108036.
[29] Szabó, B., Babuška, I.:
Finite Element Analysis: Method, Verification and Validation. J. Wiley & Sons, Hoboken, 2021.
MR 1164869
[30] Turner, M.J., Clough, R.W., Martin, H.C., Top, L.J.: Stiffness and deflection analysis of complex structures. Journal of the Aeronautical Sciences 23 (1956), 805–823.
[31] Vala, J.:
On a computational smeared damage approach to the analysis of strength of quasi-brittle materials. WSEAS Trans. Appl. Theor. Mech. 16 (2021), 283–292.
DOI 10.37394/232011.2021.16.31
[32] Vala, J., Kozák, V.:
Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites. Theor. Appl. Fract. Mech.. 107 (2020), 1–8, 102486.
DOI 10.1016/j.tafmec.2020.102486
[34] Vala, J., Kozák, V., Jedlička, M.:
Scale bridging in computational modelling of quasi-brittle fracture of cementitious composites. Solid State Phenomena 325 (2021), 56–64.
DOI 10.4028/www.scientific.net/SSP.325.59
[35] Vilppo, J., Kouhia, R., Hartikainen, J., Kolari, K., Fedoroff, A., Calonius, K.:
Anisotropic damage model for concrete and other quasi-brittle materials. Int. J. Solids Struct. 225 (2021), 1–13, 111048.
DOI 10.1016/j.ijsolstr.2021.111048