[1] Diethelm, K.:
The analysis of fractional differential equations. Springer, Heidelberg, 2010.
MR 2680847
[2] Diethelm, K.:
An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. Appl. Anal. 84 (3) (2011), 475–490.
DOI 10.2478/s13540-011-0029-1 |
MR 2837642
[3] Diethelm, K., Kiryakova, V., Luchko, Y., Machado, J.A.T., Tarasov, V.E.: Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 107 (2022), 3245–3270.
[4] Garrappa, R.:
Numerical solution of fractional differential equations: A survey and software tutorial. Mathematics 2018 (6) (2018), 1–23.
MR 3836966
[5] Garrappa, R.:
Neglecting nonlocality leads to unreliable numerical methods for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 70 (2019), 302–306.
DOI 10.1016/j.cnsns.2018.11.004 |
MR 3874637
[6] Li, C.P., Zeng, F.H.:
Numerical methods for fractional calculus. Chapman & Hall/CRC, Boca Raton, FL, 2015.
MR 3381791
[7] Podlubny, I.: Fractional differential equations. Academic Press, San Diego, CA, 1999.
[8] Rosu, F.: Parallel algorithm for numerical methods applied to fractional-order system. Parallel algorithm for numerical methods applied to fractional-order system 21 (4) (2020), 701–707.