Previous |  Up |  Next

Article

Keywords:
fractional order functional differential equations; Caputo derivative; normal and reproducing cone; unique solvability
Summary:
Conditions on the unique solvability of linear fractional functional differential equations are established. A pantograph-type model from electrodynamics is studied.
References:
[1] Aphithana, A., Ntouyas, S.K., Tariboon, J.: Existence and uniqueness of symmetric solutions for fractional differential equations with multi-point fractional integral conditions. Bound. Value Probl. 2015 (68) (2015), 14 pp., https://doi.org/10.1186/s13661-015-0329-1 DOI 10.1186/s13661-015-0329-1 | MR 3338722
[2] Diethelm, K.: The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, 2010. MR 2680847 | Zbl 1215.34001
[3] Dilna, N.: Exact solvability conditions for the model with a discrete memory effect. International Conference on Mathematical Analysis and Applications in Science and Engineering, Book of Extended Abstracts, 2022, 405–407 pp.
[4] Dilna, N., Fečkan, M.: Exact solvability conditions for the non-local initial value problem for systems of linear fractional functional differential equations. Mathematics 10 (10) (2022), 1759, https://doi.org/10.3390/math10101759 DOI 10.3390/math10101759 | MR 4563012
[5] Dilna, N., Gromyak, M., Leshchuk, S.: Unique solvability of the boundary value problems for nonlinear fractional functional differential equations. J. Math. Sci. 265 (2022), 577–588, https://doi.org/10.1007/s10958-022-06072-8 DOI 10.1007/s10958-022-06072-8 | MR 4518887
[6] Fečkan, M., Marynets, K.: Approximation approach to periodic BVP for fractional differential systems. The European Physical Journal Special Topics 226 (2017), 3681–3692, https://doi.org/10.1140/epjst/e2018-00017-9 DOI 10.1140/epjst/e2018-00017-9
[7] Fečkan, M., Wang, J.R., Pospíšil, M.: Fractional-Order Equations and Inclusions. 1st. ed., Walter de Gruyter GmbH, Berlin, Boston, 2017.
[8] Gautam, G.R., Dabas, J.: A study on existence of solutions for fractional functional differential equations. Collect. Math 69 (2018), 25–37. DOI 10.1007/s13348-016-0189-8 | MR 3742978
[9] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B.P., 2006. MR 2218073 | Zbl 1092.45003
[10] Opluštil, Z.: New solvability conditions for a non-local boundary value problem for nonlinear functional-differential equations. Nonlinear Oscil. 11 (3) (2008), 365–386. DOI 10.1007/s11072-009-0038-8 | MR 2512754
[11] Patade, J., Bhalekar, S.: Analytical solution of pantograph equation with incommensurate delay. Phys. Sci. Rev. Inform. 9 (2017), 20165103 https://doi.org/10.1515/psr-2016-5103 DOI 10.1515/psr-2016-5103
[12] Reed, M., Simon, B.: Methods of modern mathematical physics. Acad. Press, New York-London, 1972.
[13] Rontó, A., Rontó, M.: Successive Approximation Techniques in Non-Linear Boundary Value Problems. Handbook of Differential Equations: Ordinary Differential Equations, Elsevier, New York, 2009, pp. 441–592. MR 2440165
[14] Šremr, J.: Solvability conditions of the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators. Math. Bohem. 132 (2007), 263–295. DOI 10.21136/MB.2007.134126 | MR 2355659
Partner of
EuDML logo