[2] Andres, J.:
Topological entropy for impulsive differential equations. Electron. J. Qual. Theory Differ. Equ. (2020), Paper No. 68, 1–15, Corrigendum to "Topological entropy for impulsive differential equations". Electron. J. Qual. Theory Differ. Equ., (2021) Paper No. 19, 1-3.
DOI 10.14232/ejqtde.2020.1.68 |
MR 4240274
[3] Andres, J.:
Chaos for differential equations with multivalued impulses. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 31 (2021), no. 7, Paper No. 2150113, 16.
MR 4274346
[4] Andres, J.:
Topological chaos for differential inclusions with multivalued impulses on tori. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 31 (2021), no. 15, Paper No. 2150237, 11.
MR 4348467
[6] Andres, J., Górniewicz, L.:
Topological fixed point principles for boundary value problems. Topological Fixed Point Theory and Its Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2003.
MR 1998968
[7] Andres, J., Jezierski, J.:
Ivanov’s Theorem for Admissible Pairs Applicable to Impulsive Differential Equations and Inclusions on Tori. Mathematics 8 (2020), no. 9.
DOI 10.3390/math8091602
[8] Andres, J., Ludvík, P.:
Topological entropy of composition and impulsive differential equations satisfying a uniqueness condition. Chaos Solitons Fractals 156 (2022), Paper No. 111800, 11.
DOI 10.1016/j.chaos.2022.111800 |
MR 4364785
[9] Anikushin, M.M., Raĭtmann, F.:
Development of the concept of topological entropy for systems with multidimensional time. Differ. Uravn. Protsessy Upr. 52 (2016), no. 4, 14–41.
MR 3593031
[12] Hoock, A.-M.:
Topological and invariance entropy for infinite-dimensional linear systems. J. Dyn. Control Syst. 20 (2014), no. 1, 19–31.
MR 3152112
[13] Jaque, N., San Martín, B.:
Topological entropy and metric entropy for regular impulsive semiflows. 2019, arXiv: 1909.09897.
MR 3912693
[15] Jiang, B.J.: Nielsen theory for periodic orbits and applications to dynamical systems. Nielsen theory and dynamical systems (South Hadley, MA, 1992), Contemp. Math., vol. 152, Amer. Math. Soc., Providence, RI, 1993, pp. 183–202.
[16] Kawan, Ch., Matveev, A.S., Pogromsky, A.Yu.:
Remote state estimation problem: towards the data-rate limit along the avenue of the second Lyapunov method. Automatica J. IFAC 125(4) (2021), 1–12.
DOI 10.1016/j.automatica.2020.109467 |
MR 4200513
[17] Kelly, J.P., Tennant, T.:
Topological entropy of set-valued functions. Houston J. Math. 43 (2017), no. 1, 263–282.
MR 3647945
[18] Krasnoselskiĭ, M.A.: The operator of translation along the trajectories of differential equations. American Mathematical Society, Providence, R.I., 1968.
[19] Matsuoka, T.:
The number and linking of periodic solutions of periodic systems. Invent. Math. 70 (1982/83), no. 3, 319–340.
DOI 10.1007/BF01391795
[20] Matsuoka, T.:
The number and linking of periodic solutions of nondissipative systems. J. Differential Equations 76 (1988), no. 1, 190–201.
DOI 10.1016/0022-0396(88)90069-1
[23] Tien, L., Nhien, L.:
On the Topological Entropy of Nonautonomous Differential Equations. Journal of Applied Mathematics and Physics 07 (2019), 418–429.
DOI 10.4236/jamp.2019.72032
[24] Vetokhin, A.N.: Topological entropy of a diagonalizable linear system of differential equations. Int. Workshop QUALITDE-2020 (December 19-21, 2020) (Tbilisi, Georgia), 2021.
[25] Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982.
[26] Wang, Z., Ma, J., Chen, Z., Zhang, Q.:
A new chaotic system with positive topological entropy. Entropy 17 (2015), no. 8, 5561–5579.
MR 3393999