Previous |  Up |  Next

Article

Keywords:
uninorm; closure operator; principal topology; bounded lattice
Summary:
We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice based on equality of the topologies induced by uninorms.
References:
[1] Alexandroff, P.: Diskrete Raume. Mat. Sb. 2 (1937), 501-518.
[2] Arenas, F. G.: Alexandroff spaces. Acta Math. Univ. Comenianae 68 (1999), 17-25. MR 1711071
[3] Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inform. Sci. 267 (2014), 323-333. DOI  | MR 3177320
[4] Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, 231, Springer, Berlin, Heidelberg 2008. MR 2428086 | Zbl 1293.03012
[5] Birkhoff, G.: Lattice Theory. Third edition. Providence 1967. MR 0227053
[6] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Acad. Publ., Boston 2000. MR 1890229
[7] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985), 85-121. DOI  | MR 0813766 | Zbl 0582.03040
[8] Echi, O.: The category of flows of Set and Top.. Topology Appl. { mi 159} (2012), 2357-2366. DOI  | MR 2921825
[9] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817. DOI 
[10] Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411-427. DOI 10.1142/S0218488597000312 | MR 1471619 | Zbl 1232.03015
[11] Gang, L., Hua-Wen, L.: On properties of uninorms locally internal on the boundary. Fuzzy Sets Systems 332 (2018), 116-128. DOI  | MR 3732254
[12] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. MR 2538324 | Zbl 1206.68299
[13] İnce, M. A., Karaçal, F., Mesiar, R.: Medians and nullnorms on bounded lattices. Fuzzy Sets Systems 289 (2016),74-81. DOI  | MR 3454462
[14] İnce, M. A., Karaçal, F.: t-closure operators. Int. J. General Systems 48 (2019), 139-156. DOI  | MR 3892790
[15] Karaçal, F., Ertuğrul, U., Kesicioğlu, M. N.: Generating methods for principal topologies on bounded latticies. Kybernetika 57 (2021), 714-736. DOI  | MR 4332889
[16] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Systems 261 (2015), 33-43. DOI  | MR 3291484
[17] Kelley, J. L.: General Topology. Springer, New York 1975. MR 0370454
[18] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.: Order-equivalent triangular norms. Fuzzy Sets Systems 268 (2015), 59-71. DOI  | MR 3320247
[19] Khalimsky, E., Kopperman, R., Meyer, P. R.: Computer graphics and connected topologies on finite ordered sets. Topology Appl. 36 (1990), 1-17. DOI  | MR 1062180
[20] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Boston - Dordrecht - London 2000. MR 1790096 | Zbl 1087.20041
[21] Kopperman, R.: The Khalimsky line in digital topology. In: Shape in Picture: Mathematical Description of Shape in Grey-Level Images, NATO ASI Series. Computer and Systems Sciences, Springer, Berlin - Heidelberg - New York 126 (1994), 3-20.
[22] Kovalevsky, V. A.: Finite topology as applied to image analysis. CVGIP 46 (1989), 141-161. DOI 
[23] Kronheimer, E. H.: The topology of digital images. Topology Appl. 46 (1992), 279-303. DOI  | MR 1198735
[24] Lazaar, S., Richmond, T., Turki, T.: Maps generating the same primal space. Quaestiones Math. 40 (2017), 1, 17-28. DOI  | MR 3620975
[25] Ma, Z., Wu, W. M.: Logical operators on complete lattices. Inform. Sci. 55 (1991), 77-97. DOI  | MR 1080449 | Zbl 0741.03010
[26] Melin, E.: Digital surfaces and boundaries in Khalimsky spaces. J. Math. Imaging Vision 28 (2007), 169-177. DOI  | MR 2362923
[27] Parikh, R., Moss, L. S., Steinsvold, C.: Topology and epistemic logic. In: Handbook of Spatial Logics (2007), 299-341. MR 2393890
[28] Richmond, B.: Principal topologies and transformation semigroups. Topology Appl. 155 (2008), 1644-1649. DOI  | MR 2437013
[29] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120. DOI  | MR 1389951 | Zbl 0871.04007
[30] Yager, R. R.: Uninorms in fuzzy system modelling. Fuzzy Sets Systems 122 (2001), 167-175. DOI  | MR 1839955
[31] Yager, R. R.: Aggregation operators and fuzzy systems modelling. Fuzzy Sets Systems 67 (1994), 129-145. DOI  | MR 1302575
[32] Wang, Z. D., Fang, J. X.: Residual operators of left and right uninorms on a complete lattice. Fuzzy Sets Systems 160 (2009), 22-31. DOI  | MR 2469427
[33] Wang, Z. D., Fang, J. X.: Residual coimplicators of left and right uninorms on a complete lattice. Fuzzy Sets Systems 160 (2009), 2086-2096. DOI  | MR 2555022 | Zbl 1183.03027
Partner of
EuDML logo