[1] Alexandroff, P.: Diskrete Raume. Mat. Sb. 2 (1937), 501-518.
[2] Arenas, F. G.:
Alexandroff spaces. Acta Math. Univ. Comenianae 68 (1999), 17-25.
MR 1711071
[3] Aşıcı, E., Karaçal, F.:
On the T-partial order and properties. Inform. Sci. 267 (2014), 323-333.
DOI |
MR 3177320
[4] Baczyński, M., Jayaram, B.:
Fuzzy Implications. Studies in Fuzziness and Soft Computing, 231, Springer, Berlin, Heidelberg 2008.
MR 2428086 |
Zbl 1293.03012
[5] Birkhoff, G.:
Lattice Theory. Third edition. Providence 1967.
MR 0227053
[6] Dubois, D., Prade, H.:
Fundamentals of Fuzzy Sets. Kluwer Acad. Publ., Boston 2000.
MR 1890229
[7] Dubois, D., Prade, H.:
A review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985), 85-121.
DOI |
MR 0813766 |
Zbl 0582.03040
[8] Echi, O.:
The category of flows of Set and Top.. Topology Appl. { mi 159} (2012), 2357-2366.
DOI |
MR 2921825
[9] Ertuğrul, Ü., Karaçal, F., Mesiar, R.:
Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817.
DOI
[11] Gang, L., Hua-Wen, L.:
On properties of uninorms locally internal on the boundary. Fuzzy Sets Systems 332 (2018), 116-128.
DOI |
MR 3732254
[12] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.:
Aggregation Functions. Cambridge University Press, 2009.
MR 2538324 |
Zbl 1206.68299
[13] İnce, M. A., Karaçal, F., Mesiar, R.:
Medians and nullnorms on bounded lattices. Fuzzy Sets Systems 289 (2016),74-81.
DOI |
MR 3454462
[14] İnce, M. A., Karaçal, F.:
t-closure operators. Int. J. General Systems 48 (2019), 139-156.
DOI |
MR 3892790
[15] Karaçal, F., Ertuğrul, U., Kesicioğlu, M. N.:
Generating methods for principal topologies on bounded latticies. Kybernetika 57 (2021), 714-736.
DOI |
MR 4332889
[16] Karaçal, F., Mesiar, R.:
Uninorms on bounded lattices. Fuzzy Sets Systems 261 (2015), 33-43.
DOI |
MR 3291484
[17] Kelley, J. L.:
General Topology. Springer, New York 1975.
MR 0370454
[18] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.:
Order-equivalent triangular norms. Fuzzy Sets Systems 268 (2015), 59-71.
DOI |
MR 3320247
[19] Khalimsky, E., Kopperman, R., Meyer, P. R.:
Computer graphics and connected topologies on finite ordered sets. Topology Appl. 36 (1990), 1-17.
DOI |
MR 1062180
[20] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer, Boston - Dordrecht - London 2000.
MR 1790096 |
Zbl 1087.20041
[21] Kopperman, R.: The Khalimsky line in digital topology. In: Shape in Picture: Mathematical Description of Shape in Grey-Level Images, NATO ASI Series. Computer and Systems Sciences, Springer, Berlin - Heidelberg - New York 126 (1994), 3-20.
[22] Kovalevsky, V. A.:
Finite topology as applied to image analysis. CVGIP 46 (1989), 141-161.
DOI
[23] Kronheimer, E. H.:
The topology of digital images. Topology Appl. 46 (1992), 279-303.
DOI |
MR 1198735
[24] Lazaar, S., Richmond, T., Turki, T.:
Maps generating the same primal space. Quaestiones Math. 40 (2017), 1, 17-28.
DOI |
MR 3620975
[26] Melin, E.:
Digital surfaces and boundaries in Khalimsky spaces. J. Math. Imaging Vision 28 (2007), 169-177.
DOI |
MR 2362923
[27] Parikh, R., Moss, L. S., Steinsvold, C.:
Topology and epistemic logic. In: Handbook of Spatial Logics (2007), 299-341.
MR 2393890
[28] Richmond, B.:
Principal topologies and transformation semigroups. Topology Appl. 155 (2008), 1644-1649.
DOI |
MR 2437013
[29] Yager, R. R., Rybalov, A.:
Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120.
DOI |
MR 1389951 |
Zbl 0871.04007
[30] Yager, R. R.:
Uninorms in fuzzy system modelling. Fuzzy Sets Systems 122 (2001), 167-175.
DOI |
MR 1839955
[31] Yager, R. R.:
Aggregation operators and fuzzy systems modelling. Fuzzy Sets Systems 67 (1994), 129-145.
DOI |
MR 1302575
[32] Wang, Z. D., Fang, J. X.:
Residual operators of left and right uninorms on a complete lattice. Fuzzy Sets Systems 160 (2009), 22-31.
DOI |
MR 2469427
[33] Wang, Z. D., Fang, J. X.:
Residual coimplicators of left and right uninorms on a complete lattice. Fuzzy Sets Systems 160 (2009), 2086-2096.
DOI |
MR 2555022 |
Zbl 1183.03027