[1] Agamawi, Y., Hager, W., Rao, A. V.: Mesh refinement method for optimal control problems with discontinuous control profiles. In: AIAA Guidance, Navigation, and Control Conference 2017, pp. 1506.
[2] Aly, G. M., Chan, W. C.:
Application of a modified quasilinearization technique to totally singular optimal control problems. Int. J. Control 17 (1973), 809-815.
DOI
[3] Aronna, M. S., Bonnans, J. F., Martinon, P.:
A shooting algorithm for optimal control problems with singular arcs. J. Optim. Theory Appl. 158 (2013), 419-459.
DOI |
MR 3084385
[4] Betts, J. T.:
Practical methods for optimal control using nonlinear programming, ser. In: Advances in Design and Control, SIAM Press, Philadelphia 2001, 3.
MR 1826768
[6] Berkmann, P., Pesch, H. J.:
Abort landing in windshear: optimal control problem with third-order state constraint and varied switching structure. J. Optim. Theory Appl.85 (1995), 21-57.
DOI |
MR 1330841
[7] Canuto, C., Hussaini, M., Quarteroni, A., Zang, T. A.:
Spectral Methods in Fluid Dynamics. Springer Series Comput. Physics, Springer, Berlin 1991.
MR 2340254
[8] Cuthreli, J. E., Biegler, L. T.:
On the optimization of differential-algebraic processes. J. Amer. Inst. Chemical Engineers 33 (1987), 1257-1270.
DOI |
MR 0909947
[9] Cuthrell, J. E., Biegler, L. T.:
Simultaneous optimization and solution methods for batch reactor control profiles. J. Computers Chemical Engrg. 13 (1989), 49-62.
DOI
[10] Dadebo, S. A., McAuley, K. B.: On the computation of optimal singular controls. In: Proc. International Conference on Control Applications. IEEE (1995), pp. 150-155.
[11] Dadebo, S. A., McAuley, K. B., McLellan, P. J.:
On the computation of optimal singular and bang-bang controls. J. Optim. Control Appl. Methods 19 (1998), 287-297.
DOI |
MR 1650209
[12] Darby, C. L., Hager, W., Rao, A. V.:
An hp-adaptive pseudospectral method for solving optimal control problems. J. Optimal Control Appl. Methods 32 (2011), 476-502.
DOI |
MR 2850736
[13] Dolan, E., More, J. J., Munson, T. S.: Benchmarking optimization software with COPS 3.0, ANL/ MCS-273. ANL/MCS-TM-273. Argonne National Lab., Argonne, IL (US), 2004.
[14] Foroozandeh, Z., Shamsi, M., Azhmyakov, V., Shafiee, M.:
A modified pseudospectral method for solving trajectory optimization problems with singular arc. Math. Methods Appl. Sci. 40 (2016), 1783-1793.
DOI |
MR 3622433
[15] Fu, W., Lu, Q.:
Multiobjective optimal control of FOPID controller for hydraulic turbine governing systems based on reinforced multiobjective harris hawks optimization coupling with hybrid strategies. Complexity (2020), 1-15.
DOI
[16] Gao, W., Jiang, Y., Jiang, Z. P., Chai, T.:
Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming. J. Automatica 72 (2016), 37-45.
DOI |
MR 3542912
[17] Goddard, R. H.:
A method of reaching extreme altitudes. Nature 105 (1920), 809-811.
DOI
[18] Graichen, K., Petit, N.:
Solving the Goddard problem with thrust and dynamic pressure constraints using saturation functions, Proceedings of the 17th World Congress. IFAC Proceed. 41 (2008), 14301-14306.
DOI
[19] Hager, W., Liu, J., Mohapatra, S., Rao, V., Wang, X-SH.:
Convergence rate for a Gauss collocation method applied to constrained optimal control. SIAM J. Control Optim. 56 (2017), 1386-1411.
DOI |
MR 3784105
[20] Henriques, J. C. C., Lemos, J. M., Gato, L. M C., Falcao, A. F. O.:
A high-order discontinuous Galerkin method with mesh refinement for optimal control. J. Automatica 85 (2017), 70-82.
DOI |
MR 3712847
[21] Hu, G. S., Ong, C. J., Teo, C. L.:
Minimum-time control of a crane with simultaneous traverse and hoisting motions. J. Optim. Theory Appl. 120 (2004), 395-416.
DOI |
MR 2044903
[22] Huang, H. P., McClamroch, N. H.:
Time-optimal control for a robotic contour following problem. IEEE J, Robotics Automat. 4 (1998), 140-149.
DOI 10.1109/56.2077
[23] Jain, D., Tsiotras, P.:
Trajectory optimization using multiresolution techniques. J. Guidance Control Dynamics 31 (2008), 1424-1436.
DOI
[24] Kim, J. H. R., Maurer, H., Astrov, Y. A., Bode, M., Purwins, H. G.:
High-speed switch-on of a semiconductor gas discharge image converter using optimal control methods. J. Comput. Phys. 170 (2001), 395-414.
DOI
[25] Ledzewicz, U., Schattler, H.:
Optimal bang-bang controls for a two-compartment model in cancer chemotherapy. J. Optim. Theory Appl. 114 (2002), 609-637.
DOI |
MR 1921169
[26] Luus, R.:
On the application of iterative dynamic programming to singular optimal control problems. IEEE Trans. Automat. Control 37 (1992), 1802-1806.
DOI |
MR 1195226
[27] Martinon, P., Bonnans, F., Laurent-Varin, J., Trelat, E.:
Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher. J. Guidance Control Dynamics 32 (2009), 51-55.
DOI
[28] Marzban, H. R., Hoseini, S. M.:
A composite Chebyshev finite difference method for nonlinear optimal control problems. Commun. Nonlinear Sci. Numerical Simul- 18 (2012), 1347-1361.
DOI |
MR 3016889 |
Zbl 1282.65075
[29] Maurer, H.:
Numerical solution of singular control problems using multiple shooting techniques. J. Optim. Theory Appl. 18 (1973), 235-259.
DOI 10.1007/BF00935706 |
MR 0408246
[30] Mehra, R. K., Davis, R. E.:
A generalized gradient method for optimal control problems with inequalitv constraints and singular arcs. IEEE Trans. Automat. Control 17 (1972), 69-79.
DOI |
MR 0368899
[31] Olsder, G. J.:
On open- and closed-loop bang-bang control in nonzero-sum differential games. SIAM J. Control Optim. 40 (2001), 1087-1106.
DOI |
MR 1882726
[32] Ross, I. M., Gong, Q., Kang, W.:
A pseudospectral method for the optimal control of constrained feedback linearizable systems. Inst. Electrical and Electronic Engineers Transactions on Automatic Control 51 (2006), 1115-1129.
DOI |
MR 2238794
[33] Savku, E., Weber, G. W.:
A stochastic maximum principle for a markov regime-switching jump-diffusion model with delay and an application to finance. J. Optim. Theory Appl. 179 (2018), 696-721.
DOI |
MR 3865345
[34] Seywald, H., Cliff, E. M.:
Goddard problem in presence of a dynamic pressure limit. J. Guidance Control Dynamics 16 (1993), 776-781.
DOI
[35] Shamsi, M.:
A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems. J. Optim. Control Appl. Methods 32 (2011), 668-680.
DOI |
MR 2871837
[36] Shen, J., Tang, T., Wang, L.:
Spectral Methods Algorithms, Analysis and Applications. Springer Series in Computational Mathematics 2011.
MR 2867779
[37] Shirin, A., Klickstein, I. S., Feng, S., Lin, Y. T., Hlavacek, W. S., Sorrentino, F.: Prediction of optimal drug schedules for controlling autophagy. Nature 9 (2019), 1-15.
[38] Signori, A.:
Vanishing parameter for an optimal control problem modeling tumor growth. Asymptotic Analysis 117 (2020), 4-66.
DOI 10.3233/ASY-191546 |
MR 4158326
[39] Skandari, M. H. N., Tohidi, E.:
Numerical solution of a class of nonlinear optimal control problems using linearization and discretization. Appl. Math. 2 (2011), 646-652.
DOI 10.4236/am.2011.25085 |
MR 2910173
[40] Speyer, J. L.:
Periodic optimal flight. J. Guidance Control Dynamics 19 (1996), 745-755.
DOI
[41] Sun, D. Y.:
The solution of singular optimal control problems using the modified line-up competition algorithm with region-relaxing strategy. ISA Trans. 49 (2010), 106-113.
DOI
[42] Tabrizidooz, H. R., Marzban, H. R., Pourbabaee, M., Hedayati, M.:
A composite pseudospectral method for optimal control problems with piecewise smooth solutions. J. Franklin Inst. 35 (2017), 2393-2414.
DOI 10.1016/j.jfranklin.2017.01.002 |
MR 3623593
[43] Trelat, E.:
Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 154 (2012), 713-758.
DOI |
MR 2957013
[44] Tsiotras, P., Kelley, H. J.:
Goddard problem with constrained time of flight. J. Guidance Control Dynamics 15 (1992), 289-296.
DOI
[45] Williams, P.:
A Gauss-Lobatto quadrature method for solving optimal control problems. In: Proc. Seventh Biennial Engineering Mathematics and Applications Conference 2005, The Anzim Journal 47 (2006), C101-C115.
DOI |
MR 2242566
[46] Zhang, X. Y.:
Convergence analysis of the multistep Legendre pseudo-spectral method for Volterra integral equations with vanishing delays. J. Computat. Appl. Math. 321 (2017), 284-301.
DOI 10.1016/j.cam.2017.02.040 |
MR 3634936
[47] Zhao, Y., Tsiotras, P.: A density-function based mesh refinement algorithm for solving optimal control problems. In: Infotech and Aerospace Conference 2009, 2009-2019.