Previous |  Up |  Next

Article

Title: Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions (English)
Author: Berra, Fabio
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1003-1017
Summary lang: English
.
Category: math
.
Summary: We give a quantitative characterization of the pairs of weights $(w,v)$ for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak $(p,p)$ type inequality for $1\leq p<\infty $. More precisely, given any measurable set $E_0$, the estimate $$ w ( \{x\in \mathbb {R}^n\colon M^{+,d}(\mathcal {X}_{E_0})(x)>t \})\leq \frac {C[(w,v)]_{A_p^{+,d}(\mathcal {R})}^p}{t^p}v(E_0) $$ holds if and only if the pair $(w,v)$ belongs to $A_p^{+,d}(\mathcal {R})$, that is, $$ \frac {|E|}{|Q|}\leq [(w,v)]_{A_p^{+,d}(\mathcal {R})} \Bigl (\frac {v(E)}{w(Q)}\Bigr )^{ 1/p} $$ for every dyadic cube $Q$ and every measurable set $E\subset Q^+$. The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the non-dyadic case in $\mathbb {R}^2$ by following the main ideas in L. Forzani, F. J. Martín-Reyes, S. Ombrosi (2011). (English)
Keyword: restricted weak type
Keyword: one-sided maximal operator
MSC: 28B99
MSC: 42B25
idZBL: Zbl 07655777
idMR: MR4517590
DOI: 10.21136/CMJ.2022.0296-21
.
Date available: 2022-11-28T11:34:20Z
Last updated: 2025-01-06
Stable URL: http://hdl.handle.net/10338.dmlcz/151124
.
Reference: [1] Forzani, L., Martín-Reyes, F. J., Ombrosi, S.: Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function.Trans. Am. Math. Soc. 363 (2011), 1699-1719. Zbl 1218.42008, MR 2746661, 10.1090/S0002-9947-2010-05343-7
Reference: [2] Kinnunen, J., Saari, O.: On weights satisfying parabolic Muckenhoupt conditions.Nonlinear Anal., Theory Methods Appl., Ser. A 131 (2016), 289-299. Zbl 1341.42040, MR 3427982, 10.1016/j.na.2015.07.014
Reference: [3] Kinnunen, J., Saari, O.: Parabolic weighted norm inequalities and partial differential equations.Anal. PDE 9 (2016), 1711-1736. Zbl 1351.42023, MR 3570236, 10.2140/apde.2016.9.1711
Reference: [4] Lerner, A. K., Ombrosi, S.: A boundedness criterion for general maximal operators.Publ. Mat., Barc. 54 (2010), 53-71. Zbl 1183.42024, MR 2603588, 10.5565/PUBLMAT_54110_03
Reference: [5] Martín-Reyes, F. J.: New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions.Proc. Am. Math. Soc. 117 (1993), 691-698. Zbl 0771.42011, MR 1111435, 10.1090/S0002-9939-1993-1111435-2
Reference: [6] Martín-Reyes, F. J., Torre, A. de la: Two weight norm inequalities for fractional one-sided maximal operators.Proc. Am. Math. Soc. 117 (1993), 483-489. Zbl 0769.42010, MR 1110548, 10.1090/S0002-9939-1993-1110548-9
Reference: [7] Martín-Reyes, F. J., Salvador, P. Ortega, Torre, A. de la: Weighted inequalities for one- sided maximal functions.Trans. Am. Math. Soc. 319 (1990), 517-534. Zbl 0696.42013, MR 986694, 10.1090/S0002-9947-1990-0986694-9
Reference: [8] Ombrosi, S.: Weak weighted inequalities for a dyadic one-sided maximal function in ${\mathbb R}^n$.Proc. Am. Math. Soc. 133 (2005), 1769-1775. Zbl 1063.42011, MR 2120277, 10.1090/S0002-9939-05-07830-5
Reference: [9] Salvador, P. Ortega: Weighted inequalities for one-sided maximal functions in Orlicz spaces.Stud. Math. 131 (1998), 101-114. Zbl 0922.42012, MR 1636403, 10.4064/sm-131-2-101-114
Reference: [10] Sawyer, E.: Weighted inequalities for the one-sided Hardy-Littlewood maximal functions.Trans. Am. Math. Soc. 297 (1986), 53-61. Zbl 0627.42009, MR 849466, 10.1090/S0002-9947-1986-0849466-0
.

Files

Files Size Format View
CzechMathJ_72-2022-4_6.pdf 265.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo