Title:
|
Remarks on monotonically star compact spaces (English) |
Author:
|
Singh, Sumit |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
147 |
Issue:
|
3 |
Year:
|
2022 |
Pages:
|
319-323 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A space $ X $ is said to be monotonically star compact if one assigns to each open cover $ \mathcal {U} $ a subspace $ s(\mathcal {U}) \subseteq X $, called a kernel, such that $ s(\mathcal {U}) $ is a compact subset of $ X $ and $ {\rm St}(s(\mathcal {U}),\mathcal {U})=X $, and if $ \mathcal {V} $ refines $ \mathcal {U} $ then $ s(\mathcal {U}) \subseteq s(\mathcal {V}) $, where $ {\rm St}(s(\mathcal {U}),\mathcal {U})= \bigcup \{U \in \nobreak \mathcal {U}\colon U \cap s(\mathcal {U}) \not = \emptyset \} $. We prove the following statements: \item {(1)} The inverse image of a monotonically star compact space under the open perfect map is monotonically star compact. \item {(2)} The product of a monotonically star compact space and a compact space is monotonically star compact. \item {(3)} If $ X $ is monotonically star compact space with $ e(X) < \omega $, then $ A(X) $ is monotonically star compact, where $ A(X) $ is the Alexandorff duplicate of space $X$. \endgraf The above statement (2) gives an answer to the question of Song (2015). (English) |
Keyword:
|
monotonically star compact |
Keyword:
|
regular closed |
Keyword:
|
perfect |
Keyword:
|
star-compact |
Keyword:
|
covering |
Keyword:
|
star-covering |
Keyword:
|
topological space |
MSC:
|
54D20 |
MSC:
|
54D30 |
MSC:
|
54D40 |
idZBL:
|
Zbl 07584127 |
idMR:
|
MR4482308 |
DOI:
|
10.21136/MB.2021.0158-20 |
. |
Date available:
|
2022-09-05T09:36:49Z |
Last updated:
|
2022-12-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151010 |
. |
Reference:
|
[1] Aiken, L. P.: Star-covering properties: generalized $ \psi $-spaces, countability conditions, reflection.Topology Appl. 158 (2011), 1732-1737 \99999DOI99999 10.1016/j.topol.2011.06.032 . Zbl 1223.54029, MR 2812483, 10.1016/j.topol.2011.06.032 |
Reference:
|
[2] Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G.: On extent of star countable spaces.Cent. Eur. J. Math. 9 (2011), 603-615 \99999DOI99999 10.2478/s11533-011-0018-y . Zbl 1246.54017, MR 2784032 |
Reference:
|
[3] Alas, O. T., Junqueira, L. R., Wilson, R. G.: Countability and star covering properties.Topology Appl. 158 (2011), 620-626 \99999DOI99999 10.1016/j.topol.2010.12.012 . Zbl 1226.54023, MR 2765618 |
Reference:
|
[4] Cao, J., Song, Y.: Aquaro number absolute star-Lindelöf number.Houston J. Math. 29 (2003), 925-936 \99999MR99999 2045661 . Zbl 1155.54303, MR 2045661 |
Reference:
|
[5] Engelking, R.: General Topology.Mathematics Library 60. PWN-Polish Scientific Publishers, Warsaw (1977),\99999MR99999 0500780 . Zbl 0373.54002, MR 0500780 |
Reference:
|
[6] Matveev, M. V.: A Survey on Star Covering Properties.Topology Atlas Preprint \#330. York University, Toronto (1998), Available at http://at.yorku.ca/v/a/a/a/19.htm\kern0pt. |
Reference:
|
[7] Douwen, E. K. van, Reed, G. K., Roscoe, A. W., Tree, I. J.: Star covering properties.Topology Appl. 39 (1991), 71-103. Zbl 0743.54007, MR 1103993, 10.1016/0166-8641(91)90077-Y |
Reference:
|
[8] Mill, J. van, Tkachuk, V. V., Wilson, R. G.: Classes defined by stars and neighbourhood assignments.Topology Appl. 154 (2007), 2127-2134. Zbl 1131.54022, MR 2324924, 10.1016/j.topol.2006.03.029 |
Reference:
|
[9] Popvassilev, S. G., Porter, J. E.: Monotone properties defined from stars of open coverings.Topology Appl. 169 (2014), 87-98 \99999DOI99999 10.1016/j.topol.2014.02.034 . Zbl 1376.54025, MR 3199861 |
Reference:
|
[10] Song, Y. -K.: Monotonically star compact spaces.Topology Appl. 190 (2015), 35-41 \99999DOI99999 10.1016/j.topol.2015.04.016 . Zbl 1316.54010, MR 3349504 |
Reference:
|
[11] Xuan, W. -F., Shi, W. -X.: Notes on star Lindelöf spaces.Topology Appl. 204 (2016), 63-69. Zbl 1342.54015, MR 3482703, 10.1016/j.topol.2016.02.009 |
. |