Previous |  Up |  Next

Article

Title: Remarks on monotonically star compact spaces (English)
Author: Singh, Sumit
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 3
Year: 2022
Pages: 319-323
Summary lang: English
.
Category: math
.
Summary: A space $ X $ is said to be monotonically star compact if one assigns to each open cover $ \mathcal {U} $ a subspace $ s(\mathcal {U}) \subseteq X $, called a kernel, such that $ s(\mathcal {U}) $ is a compact subset of $ X $ and $ {\rm St}(s(\mathcal {U}),\mathcal {U})=X $, and if $ \mathcal {V} $ refines $ \mathcal {U} $ then $ s(\mathcal {U}) \subseteq s(\mathcal {V}) $, where $ {\rm St}(s(\mathcal {U}),\mathcal {U})= \bigcup \{U \in \nobreak \mathcal {U}\colon U \cap s(\mathcal {U}) \not = \emptyset \} $. We prove the following statements: \item {(1)} The inverse image of a monotonically star compact space under the open perfect map is monotonically star compact. \item {(2)} The product of a monotonically star compact space and a compact space is monotonically star compact. \item {(3)} If $ X $ is monotonically star compact space with $ e(X) < \omega $, then $ A(X) $ is monotonically star compact, where $ A(X) $ is the Alexandorff duplicate of space $X$. \endgraf The above statement (2) gives an answer to the question of Song (2015). (English)
Keyword: monotonically star compact
Keyword: regular closed
Keyword: perfect
Keyword: star-compact
Keyword: covering
Keyword: star-covering
Keyword: topological space
MSC: 54D20
MSC: 54D30
MSC: 54D40
idZBL: Zbl 07584127
idMR: MR4482308
DOI: 10.21136/MB.2021.0158-20
.
Date available: 2022-09-05T09:36:49Z
Last updated: 2022-12-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151010
.
Reference: [1] Aiken, L. P.: Star-covering properties: generalized $ \psi $-spaces, countability conditions, reflection.Topology Appl. 158 (2011), 1732-1737 \99999DOI99999 10.1016/j.topol.2011.06.032 . Zbl 1223.54029, MR 2812483, 10.1016/j.topol.2011.06.032
Reference: [2] Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G.: On extent of star countable spaces.Cent. Eur. J. Math. 9 (2011), 603-615 \99999DOI99999 10.2478/s11533-011-0018-y . Zbl 1246.54017, MR 2784032
Reference: [3] Alas, O. T., Junqueira, L. R., Wilson, R. G.: Countability and star covering properties.Topology Appl. 158 (2011), 620-626 \99999DOI99999 10.1016/j.topol.2010.12.012 . Zbl 1226.54023, MR 2765618
Reference: [4] Cao, J., Song, Y.: Aquaro number absolute star-Lindelöf number.Houston J. Math. 29 (2003), 925-936 \99999MR99999 2045661 . Zbl 1155.54303, MR 2045661
Reference: [5] Engelking, R.: General Topology.Mathematics Library 60. PWN-Polish Scientific Publishers, Warsaw (1977),\99999MR99999 0500780 . Zbl 0373.54002, MR 0500780
Reference: [6] Matveev, M. V.: A Survey on Star Covering Properties.Topology Atlas Preprint \#330. York University, Toronto (1998), Available at http://at.yorku.ca/v/a/a/a/19.htm\kern0pt.
Reference: [7] Douwen, E. K. van, Reed, G. K., Roscoe, A. W., Tree, I. J.: Star covering properties.Topology Appl. 39 (1991), 71-103. Zbl 0743.54007, MR 1103993, 10.1016/0166-8641(91)90077-Y
Reference: [8] Mill, J. van, Tkachuk, V. V., Wilson, R. G.: Classes defined by stars and neighbourhood assignments.Topology Appl. 154 (2007), 2127-2134. Zbl 1131.54022, MR 2324924, 10.1016/j.topol.2006.03.029
Reference: [9] Popvassilev, S. G., Porter, J. E.: Monotone properties defined from stars of open coverings.Topology Appl. 169 (2014), 87-98 \99999DOI99999 10.1016/j.topol.2014.02.034 . Zbl 1376.54025, MR 3199861
Reference: [10] Song, Y. -K.: Monotonically star compact spaces.Topology Appl. 190 (2015), 35-41 \99999DOI99999 10.1016/j.topol.2015.04.016 . Zbl 1316.54010, MR 3349504
Reference: [11] Xuan, W. -F., Shi, W. -X.: Notes on star Lindelöf spaces.Topology Appl. 204 (2016), 63-69. Zbl 1342.54015, MR 3482703, 10.1016/j.topol.2016.02.009
.

Files

Files Size Format View
MathBohem_147-2022-3_3.pdf 174.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo