Article
Keywords:
extriangulated category; semibrick; Auslander-Reiten quiver
Summary:
Let $\mathcal {X}$ be a semibrick in an extriangulated category. If $\mathcal {X}$ is a $\tau $-semibrick, then the Auslander-Reiten quiver $\Gamma (\mathcal {F}(\mathcal {X}))$ of the filtration subcategory $\mathcal {F}(\mathcal {X})$ generated by $\mathcal {X}$ is $\mathbb {Z}\mathbb {A}_{\infty }$. If $\mathcal {X}=\{X_{i}\}_{i=1}^{t}$ is a $\tau $-cycle semibrick, then $\Gamma (\mathcal {F}(\mathcal {X}))$ is $\mathbb {Z}\mathbb {A}_{\infty }/\tau _{\mathbb {A}}^{t}$.
References:
[3] Nakaoka, H., Palu, Y.:
Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193.
MR 3931945 |
Zbl 1451.18021
[5] Simson, D., Skowroński, A.:
Elements of the Representation Theory of Associative Algebras. Vol. 2. Tubes and Concealed Algebras of Euclidean Type. London Mathematical Society Student Texts 71. Cambridge University Press, Cambridge (2007).
DOI 10.1017/CBO9780511619212 |
MR 2360503 |
Zbl 1129.16001