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Abstract. Let X be a semibrick in an extriangulated category. If X is a τ -semibrick, then
the Auslander-Reiten quiver Γ(F(X )) of the filtration subcategory F(X ) generated by X
is ZA∞. If X = {Xi}

t
i=1 is a τ -cycle semibrick, then Γ(F(X )) is ZA∞/τ tA.
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1. Introduction

In representation theory of algebras, the notion of simple modules is fundamen-

tal. By Schur’s lemma, the endomorphism ring of a simple module is a division

algebra; and there exists no nonzero homomorphism between two nonisomorphic

simple modules. We say that a module is a brick if its endomorphism ring is a di-

vision algebra. Clearly, this notion is a generalization of simple modules. For

each set of isoclasses of pairwise Hom-orthogonal bricks, we call it a semibrick.

By Simson and Skowronski (see [5]), the filtration subcategory F(X ) of a semib-

rick X in the module category is an exact abelian subcategory. Let X = {Xi}
t
i=1

be a τ -cycle semibrick in the module category of a hereditary algebra. An in-

teresting and significant result says that the indecomposable objects in F(X ) are

uniserial, and the Auslander-Reiten quiver of F(X ) is a stable tube of rank t,

cf. [4], [5].

Recently, Nakaoka and Palu in [3] introduced an extriangulated category by ex-

tracting properties on triangulated categories and exact categories. Iyama, Nakaoka

and Palu in [2] developed the Auslander-Reiten theory for extriangulated categories.
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In this paper, we continue our study on semibricks in an extriangulated category in [6]

and investigate the Auslander-Reiten quiver of the filtration subcategory generated

by a semibrick.

The paper is organized as follows: We summarize the definition and some prop-

erties of an extriangulated category, its Auslander-Reiten theory and the filtration

subcategory in Section 2. In Section 3, we describe the Auslander-Reiten quiver of

the filtration subcategory generated by a semibrick in an extriangulated category.

Throughout this paper, we assume, unless otherwise stated, that all considered cat-

egories are skeletally small, Hom-finite, Krull-Schmidt, linear over a fixed field k, and

subcategories are full and closed under isomorphisms. We denote by D the k-dual.

2. Preliminaries

2.1. Extriangulated categories. Let us recall some notions concerning extri-

angulated categories from [3].

Let C be an additive category and let E : C op × C → Ab be a biadditive functor.

For any pair of objects A, C ∈ C , an element δ ∈ E(C,A) is called an E-extension.

The zero element 0 ∈ E(C,A) is called the split E-extension. For any morphism

a ∈ C (A,A′) and c ∈ C (C′, C) we have E(C, a)(δ) ∈ E(C,A′) and E(c, A)(δ) ∈

E(C′, A). We simply denote them by a∗δ and c
∗δ, respectively. Let δ ∈ E(C,A) and

δ′ ∈ E(C′, A′). A morphism (a, c) : δ → δ′ of E-extensions is a pair of morphisms

a ∈ C (A,A′) and c ∈ C (C,C′) satisfying the equality a∗δ = c∗δ′.

By Yoneda’s lemma, any E-extension δ ∈ E(C,A) induces natural transformations

δ♯ : C (−, C) → E(−, A) and δ♯ : C (A,−) → E(C,−).

For any X ∈ C , these (δ♯)X and (δ♯)X are defined by (δ♯)X : C (X,C) → E(X,A),

f 7→ f∗δ and (δ♯)X : C (A,X) → E(C,X), g 7→ g∗δ.

Two sequences of morphisms A
x
→ B

y
→ C and A

x′

→ B′ y′

→ C in C are said to be

equivalent if there exists an isomorphism b ∈ C (B,B′) such that the diagram

A
x // B

b ≃

��

y
// C

A
x′

// B′
y′

// C

is commutative. We denote the equivalence class of A
x
→ B

y
→ C by [A

x
→ B

y
→ C].

In addition, for any A,C ∈ C we denote

0 = [A
(10)
−→ A⊕ C

(0 1)
−→ C].
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For any two classes [A
x
→ B

y
→ C] and [A′ x′

→ B′ y′

→ C′] we denote

[A
x
→ B

y
→ C]⊕ [A′ x′

→ B′ y′

→ C′] = [A⊕A′ x⊕x′

−→ B ⊕B′ y⊕y′

−→ C ⊕ C′].

Definition 2.1. Let s be a correspondence which associates an equivalence class

s(δ) = [A
x
→ B

y
→ C] to any E-extension δ ∈ E(C,A) . This s is called a realization

of E if for any morphism (a, c) : δ → δ′ with s(δ) = [∆1] and s(δ′) = [∆2], there is

a commutative diagram as follows:

∆1

��

A

a

��

x // B
y

//

b

��

C

c

��
∆2 A′

x′

// B′
y′

// C′.

A realization s of E is said to be additive if it satisfies the following conditions:

(a) For any A,C ∈ C , the split E-extension 0 ∈ E(C,A) satisfies s(0) = 0.

(b) s(δ ⊕ δ′) = s(δ)⊕ s(δ′) for any pair of E-extensions δ and δ′.

Let s be an additive realization of E. If s(δ) = [A
x
→ B

y
→ C], then the sequence

A
x
→ B

y
→ C is called a conflation, x is called an inflation and y is called a deflation.

In this case, we say that A
x
→ B

y
→ C

δ
99K is an E-triangle. We write A = cocone(y)

and C = cone(x) if necessary. We say an E-triangle is splitting if it realizes 0.

Definition 2.2 ([3], Definition 2.12). We call the triplet (C ,E, s) an extriangu-

lated category if it satisfies the following conditions:

(ET1) E : C op × C → Ab is a biadditive functor.

(ET2) s is an additive realization of E.

(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C′, A′) be any pair of E-extensions, realized as

s(δ) = [A
x
→ B

y
→ C], s(δ′) = [A′ x′

→ B′ y′

→ C′]. For any commutative square

A

a

��

x // B

b

��

y
// C

A′
x′

// B′
y′

// C′

in C there exists a morphism (a, c) : δ → δ′ which is realized by (a, b, c).

(ET3)op Dual of (ET3).
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(ET4) Let δ ∈ E(D,A) and δ′ ∈ E(F,B) be E-extensions realized by A
f
→ B

f ′

→ D

and B
g
→ C

g′

→ F , respectively. Then there exist an object E ∈ C , a commutative

diagram

(2.1) A
f

// B

g

��

f ′

// D

d

��
A

h // C

g′

��

h′

// E

e

��
F F

in C , and an E-extension δ′′ ∈ E(E,A) realized by A
h
→ C

h′

→ E, which satisfy the

following compatibilities:

(i) D
d
→ E

e
→ F realizes E(F, f ′)(δ′),

(ii) E(d,A)(δ′′) = δ,

(iii) E(E, f)(δ′′) = E(e,B)(δ′),

(ET4)op dual of (ET4).

The higher positive and negative extensions En in an extriangulated category have

been defined in [1].

Proposition 2.3 ([1], Theorem 3.5). For any E-triangle A → B → C
δ

99K, the

following sequences of natural transformations are exact:

C (C,−) → C (B,−) → C (A,−)
δ♯

→ E(C,−)

→ E(B,−) → E(A,−) → E
2(C,−) → . . . ,

C (−, A) → C (−, B) → C (−, C)
δ♯
→ E(−, A)

→ E(−, B) → E(−, C) → E
2(−, A) → . . .

In what follows, we always assume that (C ,E, s) is an extriangulated category.

2.2. Auslander-Reiten theory. Recently, Iyama, Nakaoka and Palu developed

the Auslander-Reiten theory for extriangulated categories in [2].

Definition 2.4. A nonsplit extension δ ∈ E(C,A) is said to be almost split if it

satisfies the following conditions:

(1) f∗δ = 0 for any nonsection f ∈ Hom(A,A′).

(2) g∗δ = 0 for any nonretraction g ∈ Hom(C′, C).

The E-triangle A → B → C
δ

99K for an almost split extension δ is called an almost

split sequence or Auslander-Reiten E-triangle in the sense of [7].
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Definition 2.5. We say that C has almost split extensions if it satisfies the

following conditions:

(1) For any indecomposable nonprojective object A ∈ C there exists an almost

split extension δ ∈ E(A,B) for some B ∈ C .

(2) For any indecomposable noninjective object B ∈ C there exists an almost split

extension δ ∈ E(A,B) for some A ∈ C .

We denote by P(C ) the ideal of C consisting of all morphisms f such that

E(f,−) = 0, and define the ideal quotient C = C /P(C ). Dually, we define the ideal

I(C ) of C and the ideal quotient C = C /I(C ). In order to study the existence

of almost split extensions, Iyama, Nakaoka and Palu in [2] introduced the notion

of the Auslander-Reiten Serre duality. More explicitly, the Auslander-Reiten Serre

duality is a pair (τ, η) of an additive functor τ : C → C and a natural isomorphism η

such that

ηB,A : DE(B, τA) ∼= C (A,B)

for any A,B ∈ C . By [2], Theorem 3.6, C has almost split extensions if and only

if C has the Auslander-Reiten Serre duality.

Let C be an extriangulated category with Auslander-Reiten Serre duality. Denote

by ind(C ) the set of isoclasses of indecomposable objects in C . Given X,Y ∈ ind(C ),

set Irr(X,Y ) = rad(X,Y )/rad2(X,Y ), and it is an End(Y )-End(X)-bimodule. We

set dXY = dimk Irr(X,Y ). The Auslander-Reiten quiver Γ(C ) = (Q0, Q1, τ) of C is

defined as follows:

⊲ The set Q0 of vertices is ind(C ).

⊲ For X,Y ∈ Q0 there exists dXY arrows X → Y in Q1.

⊲ The functor τ , called the Auslander-Reiten translation, is such that X = τY if

and only if there exists an almost split extension δ ∈ E(Y,X).

It is well-known that the Auslander-Reiten quiver of C has a close relationship

with sink and source morphisms. To be precise, if f : X → Y is a source morphism,

then Y ∼= ⊕Y
dXYi

i for all Yi ∈ ind(C ). If f : X → Y is a sink morphism, then

X ∼= ⊕X
dXiY

i for all Xi ∈ ind(C ).

2.3. Filtration subcategories. We recall some preliminary properties about

filtration subcategories from [6].

Let X be a collection of objects in C . The filtration subcategory F(X ) consists of

all objects M admitting a finite filtration of the from

0 = X0
f0
−→ X1

f1
−→ X2 → . . .

fn−1

−→ Xn = M

with fi being an inflation and cone(fi) ∈ X for any 0 6 i 6 n− 1.
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In this case, we say that M possesses an X -filtration of length n and the minimal

length of such a filtration is called the X -length of M , which is denoted by lX (M).

Remark 2.6. Let X and Y be two collections of objects in C .

⊲ F(X ) is the smallest extension-closed subcategory containing X in C .

⊲ For any E-triangle A → B → C 99K in F(X ), we have that lX (B) 6 lX (A)+lX (C).

⊲ If Hom(X ,Y) = 0, then Hom(F(X ),F(Y)) = 0.

⊲ If E(X ,Y) = 0, then E(F(X ),F(Y)) = 0.

Proposition 2.7. Let X be a collection of objects in C . IfM ∈ F(X ), then there

exists two E-triangles

Xi → M → M ′ 99K and M ′′ → M → Xj 99K

with Xi, Xj ∈ X and lX (M ′) = lX (M ′′) = lX (M)− 1.

P r o o f. It is easily proved by [6], Lemma 2.9. �

Let M be an object in C , we say that M is a brick if End(M) ∼= k. A set X of

mutually nonisomorphic bricks in C is called a semibrick if Hom(X1, X2) = 0 for

any two nonisomorphic objects X1, X2 in X .

The following result will be frequently used in what follows, see [6], Lemmas 3.5, 5.4

and Corollary 3.6.

Proposition 2.8. Let X be a semibrick in C .

(1) If f : X → M is a nonzero morphism in F(X ) with X ∈ X , then f is an inflation

such that lX (cone(f)) = lX (M)− 1.

(2) If f : M → X is a nonzero morphism in F(X ) with X ∈ X , then f is a deflation

such that lX (cocone(f)) = lX (M)− 1.

(3) F(X ) is closed under direct summands in C .

(4) For any object X ∈ F(X ), if X = A⊕B, then lX (X) = lX (A) + lX (B).

3. The Auslander-Reiten quivers of filtration subcategories

In what follows, we assume that C is an extriangulated category with Auslander-

Reiten Serre duality (τ, η).

Definition 3.1. A semibrick X = {Xi}i∈Z is said to be τ -semibrick if it satisfies

the following conditions:

(1) τXi = Xi−1 for i ∈ Z.

(2) E2(Xi, Xj) = 0 for i, j ∈ Z.
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If C has positive global dimension 1 in the sense of [1], Definition 3.28, then (2)

is satisfied. Denote by ZA∞ the infinite translation quiver of the infinite quiver A∞,

τA is an automorphism of ZA∞. For explicit definitions, we refer to [5], Section 1 of

Chapter X. Now we are able to present our main results of this paper.

Theorem 3.2. Let X be a τ -semibrick in C . Then Γ(F(X )) ∼= ZA∞.

Before proving Theorem 3.2, we need some preparations.

Lemma 3.3. Let X = {Xi}i∈Z be a τ -semibrick in C . We set Xi[0] = 0,

Xi[1] = Xi for i ∈ Z. Then there exists an infinite diagram

. . . X1

d12
��❀

❀❀
❀❀

❀❀
X2

d22
��❀

❀❀
❀❀

❀❀
X3

d32
��❀

❀❀
❀❀

❀❀
. . . . . .

. . . X1[2]

u12

AA✄✄✄✄✄✄✄

d13
��✿

✿✿
✿✿

✿✿
X2[2]

d23
��✿

✿✿
✿✿

✿✿

u22

AA✄✄✄✄✄✄✄
X3[2] . . .

. . . X0[3]

u03

AA☎☎☎☎☎☎☎
X1[3]

u13

AA☎☎☎☎☎☎☎
X2[3]

u23

AA☎☎☎☎☎☎☎
. . . . . .

...
...

...

. . . Xt−1

dt−1,2   ❇
❇❇

❇❇
❇❇

❇
Xt

dt2 ��❃
❃❃

❃❃
❃❃

❃
Xt+1 . . .

Xt−1[2]

ut−1,2

>>⑤⑤⑤⑤⑤⑤⑤⑤

dt−1,3   ❆
❆❆

❆❆
❆❆

❆
Xt[2]

ut2

BB☎☎☎☎☎☎☎

dt3
��✿

✿✿
✿✿

✿✿
. . .

. . . Xt−2[3]

ut−2,3

>>⑥⑥⑥⑥⑥⑥⑥⑥

>>⑥⑥⑥⑥⑥⑥⑥⑥
Xt−1[3]

ut−1,3

@@��������
Xt[3] . . .

...
...

...

satisfying the following conditions.

(1) For each Xi[j], with i ∈ Z and j > 2, there exist two E-triangles

Xi

d′

ij
−→ Xi[j]

uij

−→ Xi+1[j − 1]
µij

99K and Xi[j − 1]
dij

−→ Xi[j]
u′

ij
−→ Xi+j−1

νij
99K,

where d′ij = di,j . . . di2 and u′
ij = ui+j−2,2 . . . uij .

(2) For each Xi[j] with i ∈ Z and j > 1, there exists an E-triangle

Xi[j]
( uij
di,j+1

)
// Xi+1[j − 1]⊕Xi[j + 1]

(di+1,j ui,j+1) // Xi+1[j]
̺ij //❴❴❴❴❴❴

(3) For any f ∈ Hom(Xi[j], Xl) with i, l ∈ Z and j > 2, we have that fdij = 0.

(4) For any f ∈ Hom(Xl, Xi[j]) with i, l ∈ Z and j > 2, we have that uijf = 0.
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P r o o f. We proceed the proofs of (1) and (2) by induction on j. For i ∈ Z, we

have that

1 6 dimk E(Xi+1, Xi)

= dimk E(Xi+1, τXi+1)

= dimk DC (Xi+1, Xi+1)

6 dimk End(Xi+1) = 1.

Thus, dimk E(Xi+1, Xi) = 1 and there exists a unique nonsplit extension ̺i1 ∈

E(Xi+1, Xi), which is also an almost split extension. Hence, there exists an

Auslander-Reiten E-triangle

Xi
di2−→ Xi[2]

ui2−→ Xi+1
̺i1

99K .

Since di2 6= 0, by Proposition 2.8, we have that lX (Xi[2]) = 1 + lX (Xi+1) = 2. In

this case, we take µi2 = νi2 = ̺i1.

For j > 2, by induction, there exist two E-triangles

Xi

d′

ij
−→ Xi[j]

uij
−→ Xi+1[j − 1]

µij

99K

and

(3.1) Xi+1[j − 1]
di+1,j // Xi+1[j]

u′

i+1,j // Xi+j

νi+1,j //❴❴❴

with d′ij = dij . . . di2 and u′
i+1,j = ui+j−1,2 . . . ui+1,j . Applying the functor

Hom(−, Xi) to (3.1), we obtain an exact sequence

E(Xi+j , Xi) → E(Xi+1[j], Xi) → E(Xi+1[j − 1], Xi) → 0.

Hence, there exists an extension γ ∈ E(Xi+1[j], Xi) such that the diagram

Xi

d′

ij // Xi[j]

��

uij // Xi+1[j − 1]

di+1,j

��

µij //❴❴❴

Xi
// Xi[j + 1]

−ui,j+1 // Xi+1[j]
γ

//❴❴❴❴
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is commutative. Using (3.1) together with (ET4)op, we obtain a commutative

diagram

(3.2) Xi

d′

ij // Xi[j]

∼=h

��✤
✤

✤

uij // Xi+1[j − 1]
µij //❴❴❴

Xi
// H

l

��

// Xi+1[j − 1]
µij //❴❴❴

di+1,j

��
Xi

// Xi[j + 1]

��

−ui,j+1 // Xi+1[j]

u′

i+1,j

��

γ
//❴❴❴❴

Xi+j Xi+j .

Set lh = di,j+1, by (3.2), we obtain two E-triangles

Xi

d′

i,j+1 // Xi[j + 1]
ui,j+1 // Xi+1[j]

µi,j+1 //❴❴❴

and

Xi[j]
di,j+1 // Xi[j + 1]

u′

i,j+1 // Xi+j

νi,j+1 //❴❴❴ ,

where d′i,j+1 = lhd′ij = di,j+1dij . . . di2 and

u′
i,j+1 = u′

i+1,jui,j+1 = ui+j−1,2 . . . ui+1,jui,j+1.

Moreover, by [3], Corollary 3.16, there is an E-triangle

Xi[j]
( uij
di,j+1

)
// Xi+1[j − 1]⊕Xi[j + 1]

(di+1,j, ui,j+1) // Xi+1[j]
̺ij //❴❴❴❴❴❴

with ̺ij = d′ij∗γ.

(3) For j = 2, fdi2 ∈ Hom(Xi, Xl). If l 6= i, then fdi2 = 0. If l = i, either

fdi2 = 0 or fdi2 is an isomorphism. For the latter, we obtain that di,2 is a section

and ̺i1 = 0, which is a contradiction.

For j > 2, by induction, fdijdi,j−1 ∈ Hom(Xi[j − 2], Xl) = 0. Thus, we obtain

the commutative diagram

Xi[j − 2]

0
((◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

di,j−1 // Xi[j − 1]
u′

i,j−1 //

fdij

��

Xi+j−2

s
ww♥ ♥

♥
♥
♥
♥
♥

Xl
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with fdij = su′
i,j−1 = sui+j−3,2 . . . ui+1,j−2ui,j−1. Let f

′ = sui+j−3,2 . . . ui+1,j−2 :

Xi+1[j − 2] → Xl and fdij = f ′ui,j−1. Since (−f ′, f)
(

ui,j−1

dij

)

= 0, there is a commu-

tative diagram

Xi[j − 1]

0

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯

(ui,j−1

dij
)

// Xi+1[j − 2]⊕Xi[j]
(di+1,j−1uij) //

(−f ′,f)

��

Xi+1[j − 1]

s

tt✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐

Xl

with −f ′ = sdi+1,j−1. By induction, we get that −f ′ = 0 and fdij = 0. The proof

of (4) is similar. �

In what follows, we keep the notation used in Lemma 3.3.

Remark 3.4. Note that Xi[j] 6= 0 for i ∈ Z and j > 1. Clearly, Xi[j] 6= 0 for

i ∈ Z and 1 6 j 6 2. For j > 2, there exists an E-triangle

Xi[j]
di+1,j // Xi[j + 1]

u′

i,j+1 // Xi+j

νi,j+1 //❴❴❴ .

If Xi[j] = 0, then u′
i,j+1 is an isomorphism and ui+j−1,2 is a retraction, which is

a contradiction.

Lemma 3.5.

(1) dij and uij are nonzero for i ∈ Z and j > 2.

(2) If Hom(Xi, Xj [k]) 6= 0 for i, j ∈ Z and k > 1, then j = i.

(2′) If Hom(Xj [k], Xi) 6= 0 for i, j ∈ Z and k > 1, then j = i− k + 1.

(3) d′ij = dij . . . di2 6= 0 for i ∈ Z and j > 2.

(3′) u′
ij = ui+j−2,2 . . . uij 6= 0 for i ∈ Z and j > 2.

(4) lX (Xi[j]) = j for i ∈ Z and j > 1.

P r o o f. (1) For j > 2 and i ∈ Z, by Lemma 3.3, we have an E-triangle

Xi

d′

ij
−→ Xi[j]

uij
−→ Xi+1[j − 1]

µij

99K,

where d′ij = dij . . . di2. Assume that uij = 0, then d′ij is a retraction. Since Xi

is indecomposable and Xi[j] 6= 0, we conclude that d′ij is an isomorphism and

Xi+1[j − 1] ∼= 0, which is a contradiction. Similarly, one gets that dij 6= 0.

(2) Assume that 0 6= f ∈ Hom(Xi, Xj [k]). By Lemma 3.3 (4), there is a commu-

tative diagram

Xi

f

��

0

&&▲▲
▲▲

▲▲
▲▲

▲▲
▲

c

||②
②
②
②

Xj

d′

jk // Xj [k]
ujk // Xj+1[k − 1]

νjk //❴❴❴
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since ujkf = 0. As f 6= 0, we know that c 6= 0. It follows that j = i. The proof

of (2′) is similar.

(3) The case of j = 2 follows from (1). If j > 2 and d′ij = 0, there is a diagram

(3.3) Xi

0
!!❉

❉❉
❉❉

❉❉
❉

di2 // Xi[2]
ui2 //

d′

��

Xi+1

s

{{①
①
①
①
①

̺i1 //❴❴❴

Xi[j]

such that d′ = dij . . . di3 = sui2. By (2), we know that s ∈ Hom(Xi+1, Xi[j]) = 0

and d′ = 0. Take d′′ = dij . . . di4, then d′′di3 = d′ = 0. Replacing ̺i1 by υi3 in (3.3),

there exists a morphism s′ : Xi+2 → Xi[j] such that s
′u′

i3 = d′′. It follows that

d′′ = 0. Repeating the process, one has that dij = s′′u′
i,j−1, where s

′′ is a morphism

from Xi+j−2 to Xi[j]. Thus, s
′′ = 0 and dij = 0, which contradicts to (1). The proof

of (3′) is similar.

(4) By Lemma 3.3 and (3), there is an E-triangle

Xi

d′

ij
−→ Xi[j] → Xi+1[j − 1] 99K

with d′ij 6= 0. By Proposition 2.8, we obtain that lX (Xi[j]) = 1 + lX (Xi+1[j − 1]) =

1 + j − 1 = j. �

Lemma 3.6.

(1) If f : Xs → Xi[j] is a nonzero morphism for i, s ∈ Z and j > 1, then s = i

and f is an inflation such that cone(f) = Xi+1[j − 1].

(2) Xi[j] is indecomposable for i ∈ Z and j > 1.

(3) µij 6= 0 and νij 6= 0 for i ∈ Z and j > 2.

(4) ̺ij 6= 0 for i ∈ Z and j > 2.

(5) Hom(Xi+1[j], Xi[j + 1]) = 0 for i ∈ Z and j > 1.

(6) If Xi+1[j] = τXi+2[j], then E(Xi+1[j + 1], Xi+1[j]) = 0 for i ∈ Z and j > 1.

P r o o f. (1) By Lemma 3.5 (2) and Proposition 2.8, s = i and there is an

E-triangle

Xi
f
→ Xi[j] → M 99K

with lX (M) = lX (Xi[j]) − 1 = j − 1. By Lemma 3.3 (4), there is a commutative

diagram

Xi

h

��✤
✤

✤

f
// Xi[j] // M

h′

��✤
✤

✤
//❴❴❴❴❴

Xi

d′

ij // Xi[j]
uij // Xi+1[j − 1] //❴❴❴

since uijf = 0. Note that f 6= 0, then h 6= 0. Thus, h is an isomorphism and so is h′.
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(2) If j = 1, then Xi is indecomposable since Xi is a brick. Assume that Xi[l] is

indecomposable for i ∈ Z and 1 6 l 6 j − 1. If Xi[j] = M1 ⊕M2 with M1,M2 6= 0,

by Propositions 2.7 and 2.8, M1 ∈ F(X ) and there exists an E-triangle

Xs
f
→ M1 → M3 99K

with lX (M3) = lX (M1) − 1 for some s ∈ Z. Since lX (M1) > lX (M3), we have that

f 6= 0. We have the following commutative diagram by (ET4):

Xs
// M1

(01)
��

// M3

��
Xs

f
// M1 ⊕M2

(1 0)

��

g
// M2 ⊕M3 .

��
M2

0

��✤
✤
✤

M2

0

��✤
✤
✤

Since f 6= 0, by (1), we obtain that M2⊕M3
∼= Xi+1[j− 1], which is a contradiction.

(3) By (2).

(4) If j = 1, then ̺i1 is an almost split extension for i ∈ Z. If j > 2, we claim that

̺ij 6= 0. Indeed, if ̺ij = 0, then Xi+1[j − 1]⊕Xi[j +1] ∼= Xi[j]⊕Xi+1[j]. It follows

that Xi[j +1] is a direct summand of Xi+1[j] or Xi[j]. Thus, Lemma 3.5 (4) implies

that j + 1 6 j, which is a contradiction.

(5) Let f ∈ Hom(Xi+1[j], Xi[j+1]). By Lemma 3.5 (2), we obtain that fd′i+1,j = 0

and then we have the commutative diagram

Xi+1

0
$$❏

❏❏
❏❏

❏❏
❏❏

d′

i+1,j // Xi+1[j]
ui+1,j //

f

��

Xi+2[j − 1]

s1

xx♣ ♣
♣
♣
♣
♣

Xi[j + 1]

such that f = s1ui+1,j. By Lemma 3.5 (2) again, we know that

s1d
′
i+2,j−1 ∈ Hom(Xi+2, Xi[j + 1]) = 0

and there exists a morphism s2 : Xi+3[j − 2] → Xi[j + 1] such that s2ui+2,j−1 = s1
and f = s2ui+2,j−1ui+1,j. Repeating the process, we obtain that

f = sj−2ui+j−2,3 . . . ui+2,j−1ui+1,j ,
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where sj−2 ∈ Hom(Xi+j−1[2], Xi[j + 1]). Since

sj−2di+j−1,2 ∈ Hom(Xi+j−1, Xi[j + 1]) = 0,

there exists a morphism sj−1 ∈ Hom(Xi+j , Xi[j + 1]) = 0 such that

f = sj−1ui+j−1,2 . . . ui+2,j−1ui+1,j = 0.

(6) By (5), we have that

dimk E(Xi+1[j + 1], Xi+1[j]) = dimk DC (τ−1Xi+1[j], Xi+1[j + 1])

= dimk DC (Xi+2[j], Xi+1[j + 1])

6 dimk Hom(Xi+2[j], Xi+1[j + 1]) = 0.

Therefore, we complete the proof. �

Lemma 3.7. For each Xi[j] with i ∈ Z and j > 1, the sequence

Xi[j]
( uij
di,j+1

)
// Xi+1[j − 1]⊕Xi[j + 1]

(di+1,jui,j+1) // Xi+1[j]
̺ij //❴❴❴❴❴❴

is an Auslander-Reiten E-triangle.

P r o o f. We proceed the proof by induction on j. The proof of j = 1 follows from

Lemma 3.3. Assume that ̺il is an almost split extension for i ∈ Z and 1 6 l 6 j.

By Lemma 3.6, we know that Xi+1[j + 1] is an indecomposable nonprojective

object in C . Then there exists an Auslander-Reiten E-triangle

τXi+1[j + 1] → E → Xi+1[j + 1] 99K

in C . By Lemma 3.3, there is the following diagram:

Xi+1[j − 1]

��❄
❄❄

❄❄
❄

Xi+2[j − 1]

Xi[j]

??⑧⑧⑧⑧⑧⑧

��❄
❄❄

❄❄
❄

Xi+1[j]
di+1,j+1

��❄
❄❄

❄❄
❄

??⑧⑧⑧⑧⑧⑧

Xi[j + 1]

��❄
❄❄

❄❄
❄

??⑧⑧⑧⑧⑧⑧
Xi+1[j + 1]

Xi[j + 2]

??⑧⑧⑧⑧⑧⑧
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Since di+1,j+1 is an irreducible morphism, there exists an irreducible morphism

s : τXi+1[j + 1] → Xi+1[j]. It means that τXi+1[j + 1] is a direct summand of

Xi+1[j − 1] ⊕ Xi[j + 1]. Then either τXi+1[j + 1] ∼= Xi[j + 1] or τXi+1[j + 1] ∼=

Xi+1[j − 1]. If τXi+1[j + 1] ∼= Xi+1[j − 1], then Xi+1[j + 1] ∼= τ−1Xi+1[j − 1] =

Xi+2[j − 1]. By Lemma 3.5 (4), we have that

j + 1 = lX (Xi+1[j + 1]) = lX (Xi+2[j − 1]) = j − 1,

which is a contradiction. Hence, τXi+1[j + 1] ∼= Xi[j + 1]. There is a commutative

diagram

Xi[j + 1]

s

��✤
✤
✤

(ui,j+1

di,j+2
)

// Xi+1[j]⊕Xi[j + 2]

��✤
✤

✤

(di+1,j+1ui,j+2)// Xi+1[j + 1]
̺i,j+1 //❴❴❴❴❴❴

Xi[j + 1] // E // Xi+1[j + 1]
σ′

//❴❴❴❴❴❴ ,

since (di+1,j+1ui,j+2) is not a retraction.

Assume that s is not an isomorphism. For d′i,j+1 = di,j+1 . . . di2, we claim that

sd′i,j+1 = 0. If sd′i,j+1 6= 0, by Lemma 3.6 (1), there is a commutative diagram

Xi

d′

i,j+1 // Xi[j + 1]

s

��

ui,j+1 // Xi+1[j]

h

��✤
✤
✤

µi,j+1 //❴❴❴

Xi
// Xi[j + 1] // Xi+1[j]

θ //❴❴❴ .

Since End(Xi+1[j]) is local and s is not an isomorphism, then hn = 0 for some

n ∈ N. Observe that hn−1∗ui,j+1 = hn∗θ = 0, we have that there exists a morphism

s′ : Xi+1[j] → Xi[j + 1] such that hn−1 = ui,j+1s
′. By Lemma 3.6 (5), we have that

s′ = 0 and hn−1 = 0. Repeating the process, we have that h∗θ = µi,j+1 = 0, which

is a contradiction. Therefore, we conclude that sd′i,j+1 = 0 and there is a diagram

Xi

d′

i,j+1 // Xi[j + 1]
ui,j+1 //

s

��

Xi+1[j]

q
yysss

ss
ss
ss
s

Xi[j + 1]

with s = qui,j+1. By Lemma 3.6 (6), we get that

σ′ = s∗̺i,j+1 = (qui,j+1)∗̺i,j+1 = q∗ui,j+1∗̺i,j+1 = 0,

since ui,j+1∗̺i,j+1 ∈ E(Xi+1[j+1], Xi+1[j]) = 0. This contradicts the fact that σ′ is

an almost split extension. Hence, s is an isomorphism and ̺i,j+1 = σ′. �
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Lemma 3.8. Let M ∈ F(X ) with lX (M) > j > 1, and h ∈ Hom(Xi[j],M) such

that hd′ij 6= 0 for i ∈ Z. Then there exists an E-triangle

Xi[j] → M → M ′′
99K

with lX (M ′′) = lX (M)− j.

P r o o f. If j = 2, by Proposition 2.8, there is a commutative diagram

Xi
di2 // Xi[2]

h

��

ui2 // Xi+1

h′

��✤
✤
✤

̺i1 //❴❴❴

Xi
hdi2 // M // M ′

θ //❴❴❴

with lX (M ′) = lX (M) − 1. If h′ = 0, then ̺i1 = h′∗θ = 0, which is a contradic-

tion. Hence, by Proposition 2.8 again, h′ is an inflation and we have the following

commutative diagram by (ET4)op:

(3.4) Xi
di2 // Xi[2]

h′′

��

ui2 // Xi+1

h′

��
Xi

// M

��

// M ′

��
M ′′ M ′′

with lX (M ′′) = lX (M)− 2. So the second column in (3.4) gives a desired E-triangle.

For j > 2, by diagram (3.2) in Lemma 3.3, there is a commutative diagram

Xi
di2 // Xi[2]

dij ...di3

��

ui2 // Xi+1

di+1,j−1...di+1,2

��✤
✤
✤

̺i1 //❴❴❴❴

Xi

d′

ij // Xi[j]

h

��

uij // Xi+1[j − 1]

h′

��✤
✤
✤

µij //❴❴❴

Xi
// M // M ′

θ //❴❴❴❴❴

with lX (M ′) = lX (M)−1. Since ̺i1 6= 0, then h′di+1,j−1 . . . di+1,2 6= 0. By induction,

we know that h′ is an inflation such that

lX (cone(h′)) = lX (M ′)− j + 1 = lX (M)− j.
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Applying (ET4)op yields an exact commutative diagram

(3.5) Xi

d′

ij // Xi[j]

h′′

��

uij // Xi+1[j − 1]

h′

��
Xi

// M

��

// M ′

��
cone(h′) cone(h′).

So the second column in (3.5) gives a desired E-triangle. �

Now we are in the position to prove Theorem 3.2.

P r o o f of Theorem 3.2. By Lemmas 3.3 and 3.7, it remains to show that each

indecomposable object M in F(X ) has the form Xi[j] for some i ∈ Z and j > 1.

Assume thatM is an indecomposable object with lX (M) = j. By Proposition 2.7,

there is a nonsplit E-triangle

Xi
a
→ M → M1 99K

with lX (M1) = j − 1 for some i ∈ Z. Since lX (M) > lX (M1), we get that a 6= 0.

Since a is not a section and

Xi
di2−→ Xi[2]

ui2−→ Xi+1
̺i1

99K

is an Auslander-Reiten E-triangle, there exists a morphism a′2 : Xi[2] → M such that

a = a′2di2 6= 0. By Lemma 3.8, there exists an E-triangle

Xi[2]
a2−→ M → M2 99K

with lX (M2) = j − 2. It is clear that a2 6= 0 and a2 is not a section. Since

Xi[2]
(ui2
di3

)
// Xi+1 ⊕Xi[3]

(di+1,2 ui3) // Xi+1[2]
̺i2 //❴❴❴❴❴

is an Auslander-Reiten E-triangle, there exists a morphism (s1, s2) : Xi+1⊕Xi[3]→M

such that s1ui2 + s2di3 = a2. Hence, s2di3di2 = s2di3di2 + s1ui2di2 = a2di2.

We claim that a2di2 6= 0. Indeed, applying (ET4) yields an exact commutative

diagram

Xi
di2 // Xi[2]

a2

��

ui2 // Xi+1

��
Xi

// M

��

// M ′

��
M2 M2.
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By Remark 2.6, we have that lX (M ′) 6 1 + lX (M2) = j − 1. If a2di2 = 0, then M

is a direct summand of M ′ and lX (M) 6 lX (M ′) 6 j − 1, which is a contradiction.

Therefore, we conclude that s2d
′
i3 = s2di3di2 = a2di2 6= 0. By Lemma 3.8, there

exists an E-triangle

Xi[3]
a′

3−→ M → M3 99K

with lX (M3) = j−3. Note that a′3 is not a section and ̺i3 is an almost split extension.

Repeating the process, we obtain an E-triangle

Xi[j]
a4−→ M → M4 99K

with lX (M4) = j − j = 0. So Xi[j] ∼= M .

Let Γ(F(X )) = (Q0, Q1, τ) be the Auslander-Reiten quiver of F(X ). Then

Q0 = {Xi[j] : i ∈ Z and j > 1}.

For any a = Xi[j], b ∈ Q0, by Lemma 3.7, we know that dab 6= 0 if and only if

b = Xi+1[j − 1] or b = Xi[j + 1]. Then the arrows in Q1 starting at a are

Xi[j]
uij
−→ Xi+1[j − 1] and Xi[j]

di,j+1 // Xi[j + 1] .

Similarly, the arrows in Q1 ending at a are

Xi−1[j]
dij
−→ Xi[j] and Xi−1[j + 1]

ui−1,j+1// Xi[j] .

Therefore, we obtain that Γ(F(X )) is the diagram in Lemma 3.3, and it is isomorphic

to ZA∞. �

Definition 3.9. A finite semibrick X = {Xi}
t
i=1 is said to be τ -cycle if it satisfies

the following conditions.

(1) τX2 = X1, τX3 = X2,. . .,τXt = Xt−1 and τX1 = Xt.

(2) E2(Xi, Xj) = 0 for i, j ∈ [1, t].

Theorem 3.10. Let X = {Xi}
t
i=1 be a τ -cycle semibrick. Then Γ(F(X )) ∼=

ZA∞/τ t
A
.

P r o o f. It is proved by the analogous arguments as those for proving Theo-

rem 3.2. �
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