Previous |  Up |  Next

Article

Summary:
Syukuro Manabe, Klaus Hasselmann a Giorgio Parisi získali Nobelovu cenu za fyziku pro rok 2021 za přínos k chápání tzv. komplexních systémů. Polovina této ceny patří prvním dvěma za jejich celoživotní úsilí ve vývoji modelování klimatického systému a v analýze příčin klimatické změny, zvláště pak působení skleníkových plynů. Syukuro Manabe byl průkopníkem modelování klimatu jak s využitím zjednodušených, radiačně-konvektivních modelů, tak i první generace globálních cirkulačních modelů, jimiž studoval vliv změn obsahu oxidu uhličitého v atmosféře na vývoj klimatu již v šedesátých letech a které dále vyvíjel, resp. řídil jejich vývoj v Geophysical Fluid Dynamic Laboratory. Klaus Hasselmann se věnoval výzkumu propojení chaotického chování počasí a klimatického systému, vyvinul i metody analýzy stop klimatické změny v časových řadách klimatických charakteristik. Byl zakládajícím ředitelem Max Planck Institute for Climate a vedl i German Climate Computational Center, kde je vyvíjen další uznávaný globální klimatický model. Aby bylo možné lépe pochopit přínos laureátů klimatické části Nobelovy ceny za fyziku, jsou spolu s podrobnějším zdůvodněním ukázány i obecnější principy fungování klimatického systému a jeho modelování. Je to poprvé, kdy byla klimatologie takto oceněna jako fyzikální věda, což podtrhuje její potenciál a význam pro budoucnost lidstva.
References:
[1] Arakawa, A.: A personal perspective on the early years of general circulation modeling at UCLA. In: Randall, D. A.: General circulation model development: Past, present, and future. Academic Press, 2000.
[2] Budyko, M. L.: The effect of solar radiation variations on the climate of the Earth. Tellus 21 (1969), 611–619. DOI 10.3402/tellusa.v21i5.10109
[3] Gallée, H., van Ypersele, J. P., Fichefet, Th., Tricot, C., Berger, A.: Simulation of the last glacial cycle by a coupled, sectorially averaged climate – ice-sheet model. I. The climate model. Geophys. Res. 96 (1991), 139–161. DOI 10.1029/91JD00874
[4] Ghil, M.: Atmospheric modeling. In: Martinson, D. G., Bryan, K., Ghil, M., Hall, M. D., Karl, T. R., Sarachik, E. S., Sorooshian, S., Talley, L. D.: Natural climate variability on decade-to-century time scales. National Academy Press, 1995, 164–168.
[5] Ghil, M., Robertson, A. W.: Solving problems with GCMs: General circulation models and their role in the climate modeling hierarchy. In: Randall, D. A.: General circulation model development: Past, present, and future. Academic Press, 1999.
[6] Hasselmann, K.: Optimal fingerprints for the detection of time-dependent climate change. J. Clim. 6 (1993), 1957–1971. DOI 10.1175/1520-0442(1993)006<1957:OFFTDO>2.0.CO;2
[7] Hasselmann, K.: Multi-pattern fingerprint method for detection and attribution of climate change. Clim. Dyn. 13 (1997), 601–611. DOI 10.1007/s003820050185
[8] Hasselmann, K.: Linear and nonlinear signatures. Nature 398 (1999), 755–756. DOI 10.1038/19635
[9] Hasselmann, K., Schellnhuber, H., Edenhofer, O.: Climate change: complexity in action. Phys. World 17 (2004), 31–35. DOI 10.1088/2058-7058/17/6/34
[10] Hegerl, G. C., Zwiers, F. W.: Use of models in detection & attribution of climate change. WIREs Clim. Change 2 (2011), 570–591. DOI 10.1002/wcc.121
[11] Charney, J., Fjörtoft, R., von Neumann, J.: Numerical integration of the barotropic vorticity equation. Tellus 2 (1950), 237–254. DOI 10.3402/tellusa.v2i4.8607 | MR 0042799
[12] IPCC: Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press, v tisku.
[13] MacCracken, M. C., Ghan, S. J.: Design and use of zonally averaged models. In: Schlesinger, M. E.: Physically-based modelling and simulation of climate and climatic change. Kluwer Academic Publishers, 1988, 755–803.
[14] Manabe, S., Broccoli, A. J.: Beyond global warming: How numerical models revealed the secrets of climate change. Princeton University Press, 2020.
[15] Manabe, S., Smagorinsky, J., Strickler, R. F.: Simulated climatology of a general circulation model with a hydrological cycle. Mon. Weather Rev. 93 (1965), 769–798. DOI 10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2
[16] Manabe, S., Strickler, R. F.: Thermal equilibrium of the atmosphere with a convective adjustment. Atmos. Sci. 21 (1964), 361–385. DOI 10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2
[17] Manabe, S., Wetherald, R.: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24 (1967), 241–259. DOI 10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2
[18] Manabe, S., Wetherald, R. T.: The effects of doubling the CO$_2$ concentration on the climate of a general circulation model. J. Atmos. Sci. 32 (1975), 3–15. DOI 10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2
[19] Parisi, G.: The value of science, přednáška v ICTP (SISSA). [online], [cit. 22. 10. 2021]. Dostupné z:  https://www.youtube.com/watch?v=UAxY447jlV0
[20] Richardson, L. F.: Weather prediction by numerical process. Cambridge University Press, 1922. MR 2358797
[21] Saltzman, B., Vernekar, A. D.: Global equilibrium solutions for the zonally averaged macroclimate. Geophys. Res. 77 (1972), 3936–3945. DOI 10.1029/JC077i021p03936
[22] Sellers, W. D.: A climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol. Climatol. 8 (1969), 392–400. DOI 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2
Partner of
EuDML logo