Previous |  Up |  Next

Article

Keywords:
option pricing; variance gamma process; integro-differential equation; American style options; discontinuous Galerkin method; semi-implicit discretization
Summary:
The paper presents a discontinuous Galerkin method for solving partial integro-differential equations arising from the European as well as American option pricing when the underlying asset follows an exponential variance gamma process. For practical purposes of numerical solving we introduce the modified option pricing problem resulting from a localization to a bounded domain and an approximation of small jumps, and we discuss the related error estimates. Then we employ a robust numerical procedure based on piecewise polynomial generally discontinuous approximations in the spatial domain. This technique enables a simple treatment of the American early exercise constraint by a direct encompassing it as an additional nonlinear source term to the governing equation. Special attention is paid to the proper discretization of non-local jump integral components, which is based on splitting integrals with respect to the domain according to the size of the jumps. Moreover, to preserve sparsity of resulting linear algebraic systems the pricing equation is integrated in the temporal variable by a semi-implicit Euler scheme. Finally, the numerical results demonstrate the capability of the numerical scheme presented within the reference benchmarks.\looseness -1
References:
[1] Abramowitz, M., (eds.), I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. U. S. Department of Commerce, Washington (1964),\99999MR99999 0167642 . Zbl 0171.38503
[2] Almendral, A., Oosterlee, C. W.: On American options under the variance gamma process. Appl. Math. Finance 14 (2007), 131-152. DOI 10.1080/13504860600724885 | MR 2323277 | Zbl 1160.91346
[3] Bensoussan, A., Lions, J. L.: Contrôle impulsionnel et inéquations quasi variationnelles. Gauthier-Villars, Paris (1982), French. MR 0673169 | Zbl 0491.93002
[4] Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973), 637-654. DOI 10.1086/260062 | MR 3363443 | Zbl 1092.91524
[5] Cantarutti, N., Guerra, J.: Multinomial method for option pricing under variance gamma. Int. J. Comput. Math. 96 (2019), 1087-1106. DOI 10.1080/00207160.2018.1427853 | MR 3927357
[6] Carr, P., Jarrow, R., Myneni, R.: Alternative characterizations of American put options. Math. Finance 2 (1992), 87-106. DOI 10.1111/j.1467-9965.1992.tb00040.x | Zbl 0900.90004
[7] Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton (2004). DOI 10.1201/9780203485217 | MR 2042661 | Zbl 1052.91043
[8] Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43 (2005), 1596-1626 \99999DOI99999 10.1137/S0036142903436186 . MR 2182141 | Zbl 1101.47059
[9] Cont, R., Voltchkova, E.: Integro-differential equations for option prices in exponential Lévy models. Finance Stoch. 9 (2005), 299-325. DOI 10.1007/s00780-005-0153-z | MR 2211710 | Zbl 1096.91023
[10] Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300 (1994), 463-520. DOI 10.1007/BF01450498 | MR 1304434 | Zbl 0865.90014
[11] Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow. Springer Series in Computational Mathematics 48. Springer, Cham (2015). DOI 10.1007/978-3-319-19267-3 | MR 3363720 | Zbl 1401.76003
[12] Eberlein, E.: Jump-type Lévy processes. Handbook of Financial Time Series Springer, Berlin (2009), 439-455. DOI 10.1007/978-3-540-71297-8_19 | Zbl 1186.60042
[13] Feng, L., Linetsky, V.: Pricing options in jump-diffusion models: An extrapolation approach. Oper. Res. 56 (2008), 304-325. DOI 10.1287/opre.1070.0419 | MR 2410308 | Zbl 1167.91367
[14] Fu, M. C.: Variance-gamma and Monte Carlo. Advances in Mathematical Finance Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2007), 21-35. DOI 10.1007/978-0-8176-4545-8_2 | MR 2359360 | Zbl 1159.62069
[15] Haug, E. G.: The Complete Guide to Option Pricing Formulas. McGraw-Hill, New York (2007).
[16] Hecht, F.: New development in freefem++. J. Numer. Math. 20 (2012), 251-265. DOI 10.1515/jnum-2012-0013 | MR 3043640 | Zbl 1266.68090
[17] Hirsa, A., Madan, D. B.: Pricing American options under variance gamma. J. Comput. Finance 7 (2004), 63-80. DOI 10.21314/JCF.2003.112
[18] Hozman, J., Tichý, T.: On the impact of various formulations of the boundary condition within numerical option valuation by DG method. Filomat 30 (2016), 4253-4263. DOI 10.2298/FIL1615253H | MR 3601917 | Zbl 1461.91351
[19] Hozman, J., Tichý, T.: DG framework for pricing European options under one-factor stochastic volatility models. J. Comput. Appl. Math. 344 (2018), 585-600 \99999DOI99999 10.1016/j.cam.2018.05.064 . MR 3825537 | Zbl 1394.65099
[20] Hozman, J., Tichý, T., Vlasák, M.: DG method for pricing European options under Merton jump-diffusion model. Appl. Math., Praha 64 (2019), 501-530. DOI 10.21136/AM.2019.0305-18 | MR 4022161 | Zbl 07144726
[21] Ikonen, S., Toivanen, J.: Operator splitting methods for American option pricing. Appl. Math. Lett. 17 (2004), 809-814. DOI 10.1016/j.aml.2004.06.010 | MR 2072839 | Zbl 1063.65081
[22] Itkin, A.: Pricing Derivatives Under Lévy Models: Modern Finite-Difference and Pseudo-Differential Operators Approach. Pseudo-Differential Operators. Theory and Applications 12. Birkhäuser, Basel (2017). DOI 10.1007/978-1-4939-6792-6 | MR 3618292 | Zbl 1419.91002
[23] Jacod, J., Shiryaev, A. N.: Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin (1987). DOI 10.1007/978-3-662-02514-7 | MR 0959133 | Zbl 0635.60021
[24] nar, S. Kozpı, Uzunca, M., Karasözen, B.: Pricing European and American options under Heston model using discontinuous Galerkin finite elements. Math. Comput. Simul. 177 (2020), 568-587. DOI 10.1016/j.matcom.2020.05.022 | MR 4103885 | Zbl 07318117
[25] Kufner, A., John, O., Fučík, S.: Function Spaces. Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis 3. Noordhoff International Publishing, Leyden (1977). MR 0482102 | Zbl 0364.46022
[26] Kwon, Y., Lee, Y.: A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 49 (2011), 2598-2617. DOI 10.1137/090777529 | MR 2873249 | Zbl 1232.91712
[27] Madan, D. B., Carr, P. P., Chang, E. C.: The variance gamma process and option pricing. Eur. Finance Rev. 2 (1998), 79-105. DOI 10.1023/A:1009703431535 | Zbl 0937.91052
[28] Madan, D. B., Milne, F.: Option pricing with V. G. martingale components. Math. Finance 1 (1991), 39-55. DOI 10.1111/j.1467-9965.1991.tb00018.x | Zbl 0900.90105
[29] Madan, D. B., Seneta, E.: The variance gamma (V.G.) model for share market returns. J. Business 63 (1990), 511-524. DOI 10.1086/296519
[30] Matache, A.-M., Petersdorff, T. von, Schwab, C.: Fast deterministic pricing of options on Lévy driven assets. M2AN, Math. Model. Numer. Anal. 38 (2004), 37-71. DOI 10.1051/m2an:2004003 | MR 2073930 | Zbl 1072.60052
[31] Merton, R. C.: Theory of rational option pricing. Bell J. Econ. Manage. Sci. 4 (1973), 141-183. DOI 10.2307/3003143 | MR 0496534 | Zbl 1257.91043
[32] Nicholls, D. P., Sward, A.: A discontinuous Galerkin method for pricing American options under the constant elasticity of variance model. Commun. Comput. Phys. 17 (2015), 761-778. DOI 10.4208/cicp.190513.131114a | MR 3371520 | Zbl 1375.91243
[33] Wong, H. Y., Zhao, J.: An artificial boundary method for American option pricing under the CEV model. SIAM J. Numer. Anal. 46 (2008), 2183-2209. DOI 10.1137/060671541 | MR 2399414 | Zbl 1178.35363
[34] Zvan, R., Forsyth, P. A., Vetzal, K. R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91 (1998), 199-218. DOI 10.1016/S0377-0427(98)00037-5 | MR 1628686 | Zbl 0945.65005
Partner of
EuDML logo