[1] Abramowitz, M., (eds.), I. A. Stegun:
Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. U. S. Department of Commerce, Washington (1964),\99999MR99999 0167642 .
Zbl 0171.38503
[3] Bensoussan, A., Lions, J. L.:
Contrôle impulsionnel et inéquations quasi variationnelles. Gauthier-Villars, Paris (1982), French.
MR 0673169 |
Zbl 0491.93002
[8] Cont, R., Voltchkova, E.:
A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43 (2005), 1596-1626 \99999DOI99999 10.1137/S0036142903436186 .
MR 2182141 |
Zbl 1101.47059
[15] Haug, E. G.: The Complete Guide to Option Pricing Formulas. McGraw-Hill, New York (2007).
[17] Hirsa, A., Madan, D. B.:
Pricing American options under variance gamma. J. Comput. Finance 7 (2004), 63-80.
DOI 10.21314/JCF.2003.112
[19] Hozman, J., Tichý, T.:
DG framework for pricing European options under one-factor stochastic volatility models. J. Comput. Appl. Math. 344 (2018), 585-600 \99999DOI99999 10.1016/j.cam.2018.05.064 .
MR 3825537 |
Zbl 1394.65099
[22] Itkin, A.:
Pricing Derivatives Under Lévy Models: Modern Finite-Difference and Pseudo-Differential Operators Approach. Pseudo-Differential Operators. Theory and Applications 12. Birkhäuser, Basel (2017).
DOI 10.1007/978-1-4939-6792-6 |
MR 3618292 |
Zbl 1419.91002
[25] Kufner, A., John, O., Fučík, S.:
Function Spaces. Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis 3. Noordhoff International Publishing, Leyden (1977).
MR 0482102 |
Zbl 0364.46022
[29] Madan, D. B., Seneta, E.:
The variance gamma (V.G.) model for share market returns. J. Business 63 (1990), 511-524.
DOI 10.1086/296519