[4] Dörfler, F., Simpson-Porco, J. W., Bullo, F.:
Electrical networks and algebraic graph theory: Models, properties, and applications. Proc. IEEE 106 (2018), 977-1005.
DOI 10.1109/JPROC.2018.2821924
[5] Garcés, A.:
Uniqueness of the power flow solutions in low voltage direct current grids. Electric Power Systems Research 151 (2017), 149-153.
DOI 10.1016/j.epsr.2017.05.031
[6] Garcés, A.:
On the convergence of Newton's method in power flow studies for DC microgrids. IEEE Trans. Power Syst. 33 (2018), 5770-5777.
DOI 10.1109/TPWRS.2018.2820430
[7] Garcés, A., Montoya, O.-D.:
A potential function for the power flow in DC microgrids: An analysis of the uniqueness and existence of the solution and convergence of the algorithms. J. Control Automation Electr. Syst. 30 (2019), 794-801.
DOI 10.1007/s40313-019-00489-4
[8] Ho, C.-W., Ruehli, A., Brennan, P.:
The modified nodal approach to network analysis. IEEE Trans. Circuits Syst. 22 (1975), 504-509.
DOI 10.1109/TCS.1975.1084079
[9] Center, Institute of Transportation Systems at the German Aerospace:
Eclipse SUMO - Simulation of Urban MObility. Available at
https://www.eclipse.org/sumo/ (2021).
[10] Jayarathna, C., Binduhewa, P., Ekanayake, J., Wu, J.:
Load flow analysis of low voltage DC networks with photovoltaic. 2014 9th International Conference on Industrial and Information Systems (ICIIS) IEEE, Piscataway (2014), 536-541.
DOI 10.1109/ICIINFS.2014.7036566
[11] Ku, B.-Y., Liu, J.-S.:
Solution of DC power flow for nongrounded traction systems using chain-rule reduction of ladder circuit Jacobian matrices. ASME/IEEE Joint Conference on Rail IEEE, Piscataway (2002), 123-130.
DOI 10.1109/RRCON.2002.1000104
[12] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, E. Wiessner:
Microscopic traffic simulation using SUMO. 21st IEEE International Conference on Intelligent Transportation Systems IEEE, Piscataway (2018), 2575-2582.
DOI 10.1109/ITSC.2018.8569938
[13] Montoya, O. D., Grisales-Noreña, L. F., González-Montoya, D., Ramos-Paja, C. A., Garcés, A.:
Linear power flow formulation for low-voltage DC power grids. Electric Power Systems Research 163 (2018), 375-381.
DOI 10.1016/j.epsr.2018.07.003
[14] M. Salih, D. Baumeister, M. Wazifehdust, P. Steinbusch, M. Zdrallek, S. Mour, P. Deskovic, T. Küll, C. Troullier: Impact assessment of integrating novel battery-trolleybuses, PV units and EV charging stations in a DC trolleybus network. 2nd E-Mobility Power System Integration Symposium KTH-Royal Institute of Technology, Stockholm (2018), 1-6.
[15] Sevcik, J., J.Prikryl:
A vehicle device tailored for hybrid trolleybuses and overhead wires implementation in SUMO. SUMO User Conference 2019 M. Weber et al. EPiC Series in Computing. EasyChair (2019), 145-157.
DOI 10.29007/6pqr
[16] Taheri, S., Kekatos, V.:
Power flow solvers for direct current networks. IEEE Trans. Smart Grid 11 (2020), 634-643.
DOI 10.1109/TSG.2019.2927455
[17] Tan, C. W., Cai, D. W. H., Lou, X.:
DC optimal power flow: Uniqueness and algorithms. 2012 IEEE Third International Conference on Smart Grid Communications IEEE, Piscataway (2012), 641-646.
DOI 10.1109/SmartGridComm.2012.6486058
[18] Zhou, E., Nasle, A.:
Simulation of DC power distribution systems. Proceedings of Industrial and Commercial Power Systems Conference IEEE, Piscataway (1994), 191-195.
DOI 10.1109/ICPS.1994.303572