[1] Aczél, J.:
Lectures on Functional Equations and Their Applications. Academic Press, New York 1966.
Zbl 0139.09301
[2] Baczyński, M., Jayaram, B.:
Fuzzy Implications. Springer, Berlin 2008.
Zbl 1293.03012
[3] Baczyński, M., Jayaram, B.:
On the distributivity of fuzzy implications over nilpotent or strict triangular conorms. IEEE Trans. Fuzzy Syst. 17 (2009), 590-603.
DOI
[4] Bedregal, B., Dimuro, G. P., Bustince, H., Barrenechea, E.:
New results on overlap and grouping functions. Inf. Sci. 249 (2013), 148-170.
DOI
[5] Bedregal, B., Bustince, H., Palmeira, E., Dimuro, G., Fernandez, J.:
Generalized interval-valued OWA operators with interval weights derived from interval-valued overlap functions. Int. J. Approx. Reason. 90 (2017), 1-16.
DOI
[6] Bustince, H., Barrenechea, E., Pagola, M.:
Image thresholding using restricted e-quivalent functions and maximizing the measures of similarity. Fuzzy Sets Syst. 158 (2007), 496-516.
DOI
[7] Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R.: Overlap index, overlap functions and migrativity. In: Proc. IFSA/EUSFLAT Conference, 2009, pp. 300-305.
[8] Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R.:
Overlap functions. Nonlinear Anal. 72 (2010), 1488-1499.
DOI
[9] Bustince, H., Pagola, M., Mesiar, R., Hüllermeier, E., Herrera, F.:
Grouping, overlaps, and generalized bientropic functions for fuzzy modeling of pairwise comparisions. IEEE Trans. Fuzzy Syst. 20 (2012), 405-415.
DOI
[10] Cao, M., Hu, B. Q., Qiao, J.:
On interval $(G,N)$-implications and $(O,G,N)$-implications derived from interval overlap and grouping functions. Int. J. Approx. Reason. 100 (2018), 135-160.
DOI
[11] Combs, W. E., Andrews, J. E.:
Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Trans. Fuzzy Syst. 6 (1998), 1-11.
DOI
[12] al., L. De Miguel et:
General overlap functions. Fuzzy Sets Syst. 372 (2019), 81-96.
DOI
[13] Dimuro, G. P., Bedregal, B.:
On residual implications derived from overlap functions. Inf. Sci. 312 (2015), 78-88.
DOI
[14] Dimuro, G. P., Bedregal, B.:
Archimedean overlap functions: The ordinal sum and the cancellation, idempotency and limiting properties. Fuzzy Sets Syst. 252 (2014), 39-54.
DOI
[15] Dimuro, G. P., Bedregal, B., Bustince, H., Asiáin, M. J., Mesiar, R.:
On additive generators of overlap functions. Fuzzy Sets Syst. 287 (2016), 76-96.
DOI
[16] Dimuro, G. P., Bedregal, B., Bustince, H., Jurio, A., Baczyński, M., Miś, K.:
$QL$-operations and $QL$-implications constructed from tuples $(O,G,N)$ and the generation of fuzzy subsethood and entropy measures. Int. J. Approx. Reason. 82 (2017), 170-192.
DOI
[17] Dimuro, G. P., Bedregal, B., Santiago, R. H. N.:
On $(G,N)$-implications derived from grouping functions. Inf. Sci. 279 (2014), 1-17.
DOI
[18] Dimuro, G. P., Bedregal, B., Santiago, R. H. N., Reiser, R. H. S.:
Interval additive generators of interval t-norms and interval t-conorms. Inf. Sci. 181 (2011), 3898-3916.
DOI
[19] Elkano, M., Galar, M., Sanz, J., Bustince, H.:
Fuzzy rule based classification systems for multi-class problems using binary decomposition strategies: On the influence of n-dimensional overlap functions in the fuzzy reasoning method. Inf. Sci. 332 (2016), 94-114.
DOI
[20] Elkano, M., Galar, M., Sanz, J., Fernández, A., Barrenechea, E., Herrera, F., Bustince, H.:
Enhancing multi-class classification in FARC-HD fuzzy classifier: On the synergy between n-dimensional overlap functions and decomposition strategies. IEEE Trans. Fuzzy Syst. 23 (2015), 1562-1580.
DOI
[21] Elkano, M., Galar, M., Sanz, J., Schiavo, P. F., Pereira, S., Dimuro, G. P., Borges, E. N., Bustince, H.:
Consensus via penalty functions for decision making in ensembles in fuzzy rulebased classification systems. Appl. Soft Comput. 67 (2018), 728-740.
DOI
[22] Gómez, D., Rodríguez, J. T., Montero, J., Bustince, H., Barrenechea, E.:
$n$-dimensional overlap functions. Fuzzy Sets Syst. 287 (2016), 57-75.
DOI
[23] Jurio, A., Bustince, H., Pagola, M., Pradera, A., Yager, R.:
Some properties of overlap and grouping functions and their application to image thresholding. Fuzzy Sets Syst. 229 (2013), 69-90.
DOI
[24] Jayaram, B.:
Yager's new class of implications $I_{f}$ and some classical tautologies. Inf. Sci. 177 (2007), 930-946.
DOI
[25] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Acdemic Publisher, Dordrecht, 2000.
Zbl 1087.20041
[26] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Second edition. (A. Gilányi, ed.), Boston 2009.
[27] Lu, J., Zhao, B.:
Distributivity of a class of ordinal sum implications over t-norms and t-conorms. Fuzzy Sets Syst. 378 (2020), 103-124.
DOI
[28] Mesiar, R., Mesiarová, A.:
Residual implications and left-continuous t-norms which are ordinal sums of semigroups. Fuzzy Sets Syst. 143 (2004), 47-57.
DOI
[29] Qin, F.:
Distributivity between semi-uninorms and semi-t-operators. Fuzzy Sets Syst. 299 (2016), 66-88.
DOI
[30] Qin, F., Baczyński, M., Xie, A.:
Distributive equations of implications based on continuous triangular norms (I). IEEE Trans. Fuzzy Syst. 21 (2012), 153-167.
DOI
[31] Qin, F., Baczyński, M.:
Distributive equations of implications based on continuous triangular conorms (II). Fuzzy Sets Syst. 240 (2014), 86-102.
DOI
[32] Qiao, J., Hu, B. Q.:
On multiplicative generators of overlap and grouping functions. Fuzzy Sets Syst. 332 (2018), 1-24.
DOI
[33] Qiao, J., Hu, B. Q.:
The distributive laws of fuzzy implications over overlap and grouping functions. Inf. Sci. 438 (2018), 107-126.
DOI
[34] Qiao, J., Hu, B. Q.:
On generalized migrativity property for overlap functions. Fuzzy Sets Syst. 357 (2019), 91-116.
DOI
[35] Qiao, J., Hu, B. Q.:
On the distributive laws of fuzzy implications over additively generated overlap and grouping functions. IEEE Trans. Fuzzy Syst. {\mi26} (2018), 2421-2433.
DOI
[36] Qiao, J., Hu, B. Q.:
On interval additive generators of interval overlap functions and interval grouping functions. Fuzzy Sets Syst. 323 (2017), 19-55.
DOI
[37] Su, Y., Xie, A., Liu, H. W.:
On ordinal sum implications. Inf. Sci. 293 (2015), 251-262.
DOI
[38] Su, Y., Zong, W. W., Liu, H. W.:
On distributivity equations for uninorms over semi-t-operators. Fuzzy Sets Syst. 299 (2016), 41-65.
DOI
[39] Su, Y., Zong, W. W., Liu, H. W.:
Distributivity of the ordinal sum implications over t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 24 (2016), 827-840.
DOI
[40] Ti, L., Zhou, H.:
On $(O,N)$-coimplications derived from overlap functions and fuzzy negations. J. Intell. Fuzzy Syst. 34 (2018), 3993-4007.
DOI
[41] Trillas, E., Alsina, C.:
On the law $[(p\wedge q)\rightarrow r]\equiv [(p\rightarrow r)\vee (q\rightarrow r)]$ in fuzzy logic. IEEE Trans. Fuzzy Syst. 10 (2002), 84-88.
DOI
[42] Wang, Y. M., Liu, H. W.:
The modularity conditon for overlap and grouping functions. Fuzzy Sets Syst. 372 (2019), 97-110.
DOI
[43] Xie, A., Li, C., Liu, H.:
Distributive equations of fuzzy implications based on continuous triangular conorms given as ordinal sums. IEEE Trans. Fuzzy Syst. 21 (2013), 541-554.
DOI
[44] Xie, A., Liu, H., Zhang, F., Li, C.:
On the distributivity of fuzzy implications over continuous Archimedeant-conorms and continuous t-conorms given as ordinal sums. Fuzzy Sets Syst. 205 (2012), 76-100.
DOI
[45] Zhang, T. H., Qin, F., Li, W. H.:
On the distributivity equations between uni-nullnorms and overlap (grouping) functions. Fuzzy Sets Syst. 403 (2021), 56-77.
DOI
[46] Zhang, T. H., Qin, F.:
On distributive laws between 2-uninorms and overlap (grouping) functions. Int. J. Approx. Reason. 119 (2020), 353-372.
DOI
[47] Zhou, H.:
Characterizations of fuzzy implications generated by continuous multiplicative generators of T-norms. IEEE Trans. Fuzzy Syst.
DOI
[48] Zhu, K., Wang, J., Yang, Y.:
A note on the modularity condition for overlap and grouping functions. Fuzzy Sets Syst. 408 (2021), 108-117.
DOI
[49] Zhu, K., Wang, J., Yang, Y.:
New results on the modularity condition for overlap and grouping functions. Fuzzy Sets Syst. 403 (2021), 139-147
DOI
[50] Zhu, K., Wang, J., Yang, Y.:
A short note on the migrativity properties of overlap functions over uninorms. Fuzzy Sets Syst. 414 (2021), 135-145
DOI
[51] Zhu, K. Y., Hu, B. Q.:
Addendum to "On the migrativity of uninorms and nullnorms over overlap and grouping functions'' [Fuzzy Sets Syst. 346 (2018) 1-54]. Fuzzy Sets Syst. 386 (2020), 48-59.
DOI
[52] Chang, Q., Zhou, H.:
Distributivity of $N$-ordinal sum fuzzy implications over t-norms and t-conorms. Int. J. Approx. Reason. 131 (2021), 189-213.
DOI
[53] Zhou, H.:
Two general construction ways toward unified framework of ordinal sums of fuzzy implications. IEEE Trans. Fuzzy Syst. 29 (2021), 846-860.
DOI