[1] Algoet, P.:
The strong law of large numbers for sequential decisions under uncertainty. IEEE Trans. Inform. Theory 40 (1994), 609-633.
DOI
[2] Algoet, P.:
Universal schemes for learning the best nonlinear predictor given the infinite past and side information. IEEE Trans. Inform. Theory 45 (1999), 1165-1185.
DOI |
Zbl 0959.62078
[3] Bailey, D. H.: Sequential Schemes for Classifying and Predicting Ergodic Processes. Ph.D. Thesis, Stanford University, 1976.
[4] Csiszár, I., Talata, Zs.:
Context tree estimation for not necessarily finite memory processes via BIC and MDL. IEEE Trans. Inform. Theory 52 (2006), 3, 1007-1016.
DOI
[5] Györfi, L., Morvai, G., Yakowitz, S.:
Limits to consistent on-line forecasting for ergodic time series. IEEE Trans. Inform. Theory 44 (1998), 886-892.
DOI |
MR 1607704 |
Zbl 0899.62122
[7] Kalikow, S., Katznelson, Y., Weiss, B.:
Finitarily deterministic generators for zero entropy systems. Israel J. Math. 79 (1992), 33-45.
DOI
[8] Maker, Ph. T.: The ergodic theorem for a sequence of functions. Duke Math. J. 6 (1940), 27-30.
[9] Morvai, G.: Guessing the output of a stationary binary time series. In: Foundations of Statistical Inference (Y. Haitovsky, H. R.Lerche, and Y. Ritov, eds.), Physika-Verlag, pp. 207-215, 2003.
[10] Morvai, G., Yakowitz, S., Algoet, P.:
Weakly convergent nonparametric forecasting of stationary time series. IEEE Trans. Inform. Theory 43 (1997), 483-498.
DOI
[11] Morvai, G., Weiss, B.:
Forecasting for stationary binary time series. Acta Appl. Math. 79 (2003), 25-34.
DOI
[12] Morvai, G., Weiss, B.:
Intermittent estimation of stationary time series. Test 13 (2004), 525-542.
DOI
[13] Morvai, G., Weiss, B.:
Inferring the conditional mean. Theory Stochast. Process. 11 (2005), 1-2, 112-120.
Zbl 1164.62382
[14] Morvai, G., Weiss, B.:
Prediction for discrete time series. Probab. Theory Related Fields 132 (2005), 1-12.
DOI
[15] Morvai, G., Weiss, B.:
Limitations on intermittent forecasting. Statist. Probab. Lett. 72 (2005), 285-290.
DOI
[16] Morvai, G., Weiss, B.:
On classifying processes. Bernoulli 11 (2005), 523-532.
DOI
[17] Morvai, G., Weiss, B.:
Order estimation of Markov chains. IEEE Trans. Inform. Theory 51 (2005), 1496-1497.
DOI
[18] Morvai, G., Weiss, B.:
Forward estimation for ergodic time series. Ann. I. H. Poincaré Probab. Statist. 41 (2005), 859-870.
DOI
[19] Morvai, G., Weiss, B.:
On estimating the memory for finitarily Markovian processes. Ann. I. H. Poincaré PR 43 (2007), 15-30.
DOI
[20] Morvai, G., Weiss, B.:
On sequential estimation and prediction for discrete time series. Stoch. Dyn. 7 (2007), 4, 417-437.
DOI |
Zbl 1255.62228
[21] Morvai, G., Weiss, B.:
Estimating the lengths of memory words. IEEE Trans. Inform. Theory 54 (2008), 8, 3804-3807.
DOI |
Zbl 1329.60095
[22] Morvai, G., Weiss, B.:
On universal estimates for binary renewal processes. Annals Appl. Probab. 18 (2008), 5, 1970-1992.
DOI |
Zbl 1158.62053
[23] Morvai, G., Weiss, B.: Estimating the residual waiting time for binary stationary time series. Proc. ITW2009, Volos 2009, pp. 67-70.
[24] Morvai, G., Weiss, B.: A note on prediction for discrete time series. Kybernetika 48 (2012), 4, 809-823.
[25] Morvai, G., Weiss, B.:
Universal tests for memory words. IEEE Trans. Inform. Theory 59 (2013), 6873-6879.
DOI
[26] Morvai, G., Weiss, B.:
Inferring the residual waiting time for binary stationary time series. Kybernetika 50 (2014), 869-882.
DOI |
Zbl 1308.62067
[27] Morvai, G., Weiss, B.:
A versatile scheme for predicting renewal times. Kybernetika 52 (2016), 348-358.
DOI
[28] Morvai, G., Weiss, B.:
Universal rates for estimating the residual waiting time in an intermittent way. Kybernetika 56, (2020), 4, 601-616.
DOI
[29] Morvai, G., Weiss, B.:
On universal algorithms for classifying and predicting stationary processes. Probab. Surveys 18 (2021), 77-131.
DOI 10.1214/20-PS345
[30] Morvai, G., Weiss, B.:
Consistency, integrability and asymptotic normality for some intermittent estimators. ALEA, Lat. Am. J. Probab. Math. Stat. 18 (2021), 1643-1667.
DOI
[31] Ryabko, B. Ya.:
Prediction of random sequences and universal coding. Problems Inform. Trans. 24 (1988), 87-96.
DOI |
Zbl 0666.94009
[32] Ryabko, D.: Asymptotic Nonparametric Statistical Analysis of Stationary Time Series. Springer, Cham 2019.
[33] Shields, P. C.:
The Ergodic Theory of Discrete Sample Paths. In: Graduate Studies in Mathematics. American Mathematical Society 13, Providence 1996.
Zbl 0879.28031
[34] Suzuki, J.:
Universal prediction and universal coding. Systems Computers Japan 34 (2003), 6, 1-11.
DOI
[35] Takahashi, H.:
Computational limits to nonparametric estimation for ergodic processes. IEEE Trans. Inform. Theory 57 (2011), 6995-6999.
DOI