Previous |  Up |  Next

Article

Keywords:
Riccati equation; oscillation; non-oscillation; conjoined (prepared, preferred) solution; Liouville's formula
Summary:
The Riccati equation method is used to study the oscillatory and non-oscillatory behavior of solutions of linear four-dimensional Hamiltonian systems. One oscillatory and three non-oscillatory criteria are proved. Examples of the obtained results are compared with some well known ones.
References:
[1] Al-Dosary, K. I., Abdullah, H. K., Hussein, D.: Short note on oscillation of matrix Hamiltonian systems. Yokohama Math. J. 50 (2003), 23-30. MR 2052143 | Zbl 1062.34032
[2] Butler, G. J., Erbe, L. H., Mingarelli, A. B.: Riccati techniques and variational principles in oscillation theory for linear systems. Trans. Am. Math. Soc. 303 (1987), 263-282. DOI 10.1090/S0002-9947-1987-0896022-5 | MR 0896022 | Zbl 0648.34031
[3] Byers, R., Harris, B. J., Kwong, M. K.: Weighted means and oscillation conditions for second order matrix differential equations. J. Differ. Equations 61 (1986), 164-177. DOI 10.1016/0022-0396(86)90117-8 | MR 0823400 | Zbl 0609.34042
[4] Chen, S., Zheng, Z.: Oscillation criteria of Yan type for linear Hamiltonian systems. Comput. Math. Appl. 46 (2003), 855-862. DOI 10.1016/S0898-1221(03)90148-9 | MR 2020444 | Zbl 1049.34038
[5] Erbe, L. H., Kong, Q., Ruan, S.: Kamenev type theorems for second order matrix differential systems. Proc. Am. Math. Soc. 117 (1993), 957-962. DOI 10.1090/S0002-9939-1993-1154244-0 | MR 1154244 | Zbl 0777.34024
[6] Grigoryan, G. A.: On two comparison tests for second-order linear ordinary differential equations. Differ. Equ. 47 (2011), 1237-1252 translation from Differ. Uravn. 47 2011 1225-1240. DOI 10.1134/S0012266111090023 | MR 2918496 | Zbl 1244.34051
[7] Grigoryan, G. A.: Two comparison criteria for scalar Riccati equations with applications. Russ. Math. 56 (2012), 17-30 translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2012 2012 20-35. DOI 10.3103/S1066369X12110023 | MR 3137099 | Zbl 1270.34062
[8] Grigoryan, G. A.: On the stability of systems of two first-order linear ordinary differential equations. Differ. Equ. 51 (2015), 283-292 translation from Differ. Uravn. 51 2015 283-292. DOI 10.1134/S0012266115030015 | MR 3373201 | Zbl 1344.34064
[9] Grigorian, G. A.: On one oscillatory criterion for the second order linear ordinary differential equations. Opusc. Math. 36 (2016), 589-601. DOI 10.7494/OpMath.2016.36.5.589 | MR 3520801 | Zbl 1360.34075
[10] Grigorian, G. A.: Oscillatory criteria for the systems of two first-order linear differential equations. Rocky Mt. J. Math. 47 (2017), 1497-1524. DOI 10.1216/RMJ-2017-47-5-1497 | MR 3705762 | Zbl 1378.34052
[11] Grigorian, G. A.: Oscillatory and non oscillatory criteria for the systems of two linear first order two by two dimensional matrix ordinary differential equations. Arch. Math., Brno 54 (2018), 189-203. DOI 10.5817/AM2018-4-189 | MR 3887360 | Zbl 06997350
[12] Kumary, I. S., Umamaheswaram, S.: Oscillation criteria for linear matrix Hamiltonian systems. J. Differ. Equations 165 (2000), 174-198. DOI 10.1006/jdeq.1999.3746 | MR 1771793 | Zbl 0970.34025
[13] Li, L., Meng, F., Zheng, Z.: Oscillation results related to integral averaging technique for linear Hamiltonian systems. Dyn. Syst. Appl. 18 (2009), 725-736. MR 2562259 | Zbl 1208.34040
[14] Meng, F., Mingarelli, A. B.: Oscillation of linear Hamiltonian systems. Proc. Am. Math. Soc. 131 (2003), 897-904. DOI 10.1090/S0002-9939-02-06614-5 | MR 1937428 | Zbl 1008.37032
[15] Mingarelli, A. B.: On a conjecture for oscillation of second order ordinary differential systems. Proc. Am. Math. Soc. 82 (1981), 593-598. DOI 10.1090/S0002-9939-1981-0614884-3 | MR 0614884 | Zbl 0487.34030
[16] Sun, Y. G.: New oscillation criteria for linear matrix Hamiltonian systems. J. Math. Anal. Appl. 279 (2003), 651-658. DOI 10.1016/S0022-247X(03)00053-2 | MR 1974052 | Zbl 1032.34032
[17] Wang, Q.: Oscillation criteria for second-order matrix differential systems. Arch. Math. 76 (2001), 385-390. DOI 10.1007/PL00000448 | MR 1824258 | Zbl 0989.34024
[18] Yang, Q., Mathsen, R., Zhu, S.: Oscillation theorems for self-adjoint matrix Hamiltonian systems. J. Differ. Equations 190 (2003), 306-329. DOI 10.1016/S0022-0396(02)00172-9 | MR 1970965 | Zbl 1032.34033
[19] Zheng, Z.: Linear transformation and oscillation criteria for Hamiltonian systems. J. Math. Anal. Appl. 332 (2007), 236-245. DOI 10.1016/j.jmaa.2006.10.034 | MR 2319657 | Zbl 1124.34021
[20] Zheng, Z., Zhu, S.: Hartman type oscillation criteria for linear matrix Hamiltonian systems. Dyn. Syst. Appl. 17 (2008), 85-96. MR 2433892 | Zbl 1203.34059
Partner of
EuDML logo