Previous |  Up |  Next

Article

Keywords:
Cahn-Hilliard equation with inertial term; large initial data; classical solution; $L_p$ decay
Summary:
The Cauchy problem of the Cahn-Hilliard equation with inertial term in multi space dimension is considered. Based on detailed analysis of Green's function, using fixed-point theorem, we get the global existence in time of classical solution with large initial data. Furthermore, we get $L_p$ decay rate of the solution.
References:
[1] Caffarelli, L. A., Muler, N. E.: An $L^\infty$ bound for solutions of the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 133 (1995), 129-144. DOI 10.1007/BF00376814 | MR 1367359 | Zbl 0851.35010
[2] Cahn, J. W., Hilliard, J. E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958), 258-267. DOI 10.1063/1.1744102 | Zbl 1431.35066
[3] Deng, S., Wang, W., Zhao, H.: Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation. Nonlinear Anal., Real World Appl. 11 (2010), 4404-4414. DOI 10.1016/j.nonrwa.2010.05.024 | MR 2683885 | Zbl 1202.35138
[4] Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a singularly perturbed Cahn-Hilliard system. Math. Nachr. 272 (2004), 11-31. DOI 10.1002/mana.200310186 | MR 2079758 | Zbl 1046.37047
[5] Elliott, C. M., Zheng, S.: On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96 (1986), 339-357. DOI 10.1007/BF00251803 | MR 0855754 | Zbl 0624.35048
[6] Galenko, P.: Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system. Phys. Lett., A 287 (2001), 190-197. DOI 10.1016/S0375-9601(01)00489-3
[7] Galenko, P., Jou, D.: Diffuse-interface model for rapid phase transformations in nonequilibrium systems. Phys. Rev. E 71 (2005), Article ID 046125. DOI 10.1103/PhysRevE.71.046125
[8] Galenko, P., Lebedev, V.: Analysis of the dispersion relation in spinodal decomposition of a binary system. Philos. Mag. Lett. 87 (2007), 821-827. DOI 10.1080/09500830701395127
[9] Galenko, P., Lebedev, V.: Local nonequilibrium effect on spinodal decomposition in a binary system. Int. J. Thermodyn. 11 (2008), 21-28.
[10] Galenko, P., Lebedev, V.: Non-eqilibrium effects in spinodal decomposition of a binary system. Phys. Lett., A 372 (2008), 985-989. DOI 10.1016/j.physleta.2007.08.070 | Zbl 1217.82029
[11] Gatti, S., Grasselli, M., Miranville, A., Pata, V.: On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation. J. Math. Anal. Appl. 312 (2005), 230-247. DOI 10.1016/j.jmaa.2005.03.029 | MR 2175216 | Zbl 1160.35518
[12] Grasselli, M., Petzeltová, H., Schimperna, G.: Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term. J. Differ. Equations 239 (2007), 38-60. DOI 10.1016/j.jde.2007.05.003 | MR 2341548 | Zbl 1129.35017
[13] Grasselli, M., Schimperna, G., Segatti, A., Zelik, S.: On the 3D Cahn-Hilliard equation with inertial term. J. Evol. Equ. 9 (2009), 371-404. DOI 10.1007/s00028-009-0017-7 | MR 2511557 | Zbl 1239.35160
[14] Grasselli, M., Schimperna, G., Zelik, S.: On the 2D Cahn-Hilliard equation with inertial term. Commun. Partial Differ. Equations 34 (2009), 137-170. DOI 10.1080/03605300802608247 | MR 2512857 | Zbl 1173.35086
[15] Grasselli, M., Schimperna, G., Zelik, S.: Trajectory and smooth attractors for CahnHilliard equations with inertial term. Nonlinearity 23 (2010), 707-737. DOI 10.1088/0951-7715/23/3/016 | MR 2593916 | Zbl 1198.35038
[16] Li, T. T., Chen, Y. M.: The Nonlinear Evolution Euqation. Scientific Press, Beijing (1989), Chinese.
[17] Wang, W., Wang, W.: The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions. J. Math. Anal. Appl. 366 (2010), 226-241. DOI 10.1016/j.jmaa.2009.12.013 | MR 2593648 | Zbl 1184.35218
[18] Wang, W., Wu, Z.: Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions. J. Math. Anal. Appl. 387 (2012), 349-358. DOI 10.1016/j.jmaa.2011.09.016 | MR 2845755 | Zbl 1229.35252
[19] Zheng, S., Milani, A.: Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations. Nonlinear Anal., Theory Methods Appl., Ser. A 57 (2004), 843-877. DOI 10.1016/j.na.2004.03.023 | MR 2067737 | Zbl 1055.35028
[20] Zheng, S., Milani, A.: Global attractors for singular perturbations of the Cahn-Hilliard equations. J. Differ. Equations 209 (2005), 101-139. DOI 10.1016/j.jde.2004.08.026 | MR 2107470 | Zbl 1063.35041
Partner of
EuDML logo