[1] Abramowitz, M., (eds.), I. A. Stegun:
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. U. S. Department of Commerce, Washington (1964).
MR 0167642 |
Zbl 0171.38503
[3] Alziary, B., Takáč, P.:
Analytic solutions and complete markets for the Heston model with stochastic volatility. Electron. J. Differ. Equ. 2018 (2018), Article ID 168, 54 pages.
MR 3874931 |
Zbl 1406.35415
[5] Aubin, J. P.:
Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 21 (1967), 599-637.
MR 0233068 |
Zbl 0276.65052
[6] Bates, D. S.:
Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options. Rev. Financ. Stud. 9 (1996), 69-107.
DOI 10.1093/rfs/9.1.69
[7] Baustian, F., Mrázek, M., Pospíšil, J., Sobotka, T.:
Unifying pricing formula for several stochastic volatility models with jumps. Appl. Stoch. Models Bus. Ind. 33 (2017), 422-442.
DOI 10.1002/asmb.2248 |
MR 3690484 |
Zbl 1420.91444
[8] Birkhoff, G., Schultz, M. H., Varga, R. S.:
Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11 (1968), 232-256.
DOI 10.1007/BF02161845 |
MR 0226817 |
Zbl 0159.20904
[10] Bramble, J. H., Schatz, A. H., Thomée, V., Wahlbin, L. B.:
Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations. SIAM J. Numer. Anal. 14 (1977), 218-241.
DOI 10.1137/0714015 |
MR 0448926 |
Zbl 0364.65084
[14] Daněk, J., Pospíšil, J.:
Numerical aspects of integration in semi-closed option pricing formulas for stochastic volatility jump diffusion models. Int. J. Comput. Math. 97 (2020), 1268-1292.
DOI 10.1080/00207160.2019.1614174 |
MR 4095540
[15] Davis, M., Obłój, J.:
Market completion using options. Advances in Mathematics of Finance Banach Center Publications 83. Polish Academy of Sciences, Warsaw (2008), 49-60.
DOI 10.4064/bc83-0-4 |
MR 2509226 |
Zbl 1153.91479
[19] Filipová, K.: Solution of Option Pricing Equations Using Orthogonal Polynomial Expansion: Master's Thesis. University of West Bohemia, Plzeň (2019).
[21] Fouque, J.-P., Papanicolaou, G., Sircar, K. R.:
Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge (2000).
MR 1768877 |
Zbl 0954.91025
[23] Gautschi, W.:
Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004).
MR 2061539 |
Zbl 1130.42300
[25] Heston, S. L., Rossi, A. G.:
A spanning series approach to options. Review Asset Pricing Studies 7 (2017), 2-42.
DOI 10.1093/rapstu/raw006
[26] Hull, J. C.:
Options, Futures, and Other Derivatives. Pearson, New York (2018).
Zbl 1087.91025
[28] Jarrow, R., Rudd, A.:
Approximate option valuation for arbitrary stochastic processes. J. Financ. Econ. 10 (1982), 347-369.
DOI 10.1016/0304-405X(82)90007-1
[31] Kufner, A.:
Weighted Sobolev Spaces. Teubner-Texte zur Mathematik 83. B. G. Teubner, Leipzig (1980).
MR 664599 |
Zbl 0455.46034
[32] Kufner, A., Sändig, A.-M.:
Some Applications of Weighted Sobolev Spaces. Teubner-Texte zur Mathematik 100. B. G. Teubner, Leipzig (1987).
MR 926688 |
Zbl 0662.46034
[33] Lebedev, N. N.:
Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs (1965).
MR 0174795 |
Zbl 0131.07002
[34] Lewis, A. L.:
Option Valuation Under Stochastic Volatility: With Mathematica Code. Finance Press, Newport Beach (2000).
MR 1742310 |
Zbl 0937.91060
[35] Lewis, A. L.:
Option Valuation Under Stochastic Volatility II: With Mathematica Code. Finance Press, Newport Beach (2016).
MR 3526206 |
Zbl 1391.91001
[36] Olver, F. W. J., Lozier, D. W., Boisvert, R. F., (eds.), C. W. Clark:
NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010).
MR 2723248 |
Zbl 1198.00002
[38] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.:
Numerical recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007).
MR 2371990 |
Zbl 1132.65001
[41] Stein, E. M., Stein, J. C.:
Stock price distributions with stochastic volatility: An analytic approach. Rev. Financ. Stud. 4 (1991), 727-752.
DOI 10.1093/rfs/4.4.727 |
Zbl 06857133
[45] Thomée, V.:
Some error estimates in Galerkin methods for parabolic equations. Mathematical Aspects of Finite Element Methods Lecture Notes in Mathematics 606. Springer, Berlin (1977), 343-352.
DOI 10.1007/BFb0064472 |
MR 0658321 |
Zbl 0356.35043
[46] Thomée, V.:
Galerkin-finite element methods for parabolic equations. Proceedings of the International Congress of Mathematicians. Vol. 2 Academia Scientiarum Fennica, Helsinki (1980), 943-952.
MR 0562711 |
Zbl 0418.65050
[50] Wilmott, P.: Derivatives: The Theory and Practice of Financial Engineering. John Wiley & Sons, Chichester (1998).