Title:
|
Exact solution of the time fractional variant Boussinesq-Burgers equations (English) |
Author:
|
Bira, Bibekananda |
Author:
|
Mandal, Hemanta |
Author:
|
Zeidan, Dia |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
66 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
437-449 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the present article, we consider a nonlinear time fractional system of variant Boussinesq-Burgers equations. Using Lie group analysis, we derive the infinitesimal groups of transformations containing some arbitrary constants. Next, we obtain the system of optimal algebras for the symmetry group of transformations. Afterward, we consider one of the optimal algebras and construct similarity variables, which reduces the given system of fractional partial differential equations (FPDEs) to fractional ordinary differential equations (FODEs). Further, under the invariance condition we construct the exact solution and the physical significance of the solution is investigated graphically. Finally, we study the conservation law of the system of equations. (English) |
Keyword:
|
fractional variant Boussinesq equation |
Keyword:
|
symmetry analysis |
Keyword:
|
exact solution |
MSC:
|
35D99 |
MSC:
|
35R11 |
MSC:
|
76M60 |
idZBL:
|
07361064 |
idMR:
|
MR4263160 |
DOI:
|
10.21136/AM.2021.0269-19 |
. |
Date available:
|
2021-05-20T13:36:50Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148903 |
. |
Reference:
|
[1] Abdel-Salam, E. A.-B., Hassan, G. F.: Multiwave solutions of fractional 4th and 5th order Burgers equations.Turk. J. Phys. 39 (2015), 227-241. 10.3906/fiz-1501-3 |
Reference:
|
[2] Ahmed, E., El-Sayed, A. M. A., El-Saka, H. A. A.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz Rössler, Chua and Chen systems.Phys. Lett., A 358 (2006), 1-4. Zbl 1142.30303, MR 2244918, 10.1016/j.physleta.2006.04.087 |
Reference:
|
[3] Bira, B., Sekhar, T. R., Zeidan, D.: Exact solutions for some time-fractional evolution equations using Lie group theory.Math. Methods Appl. Sci. 41 (2018), 6717-6725. Zbl 06986320, MR 3879269, 10.1002/mma.5186 |
Reference:
|
[4] Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations.J. Math. Anal. Appl. 227 (1998), 81-97. Zbl 0932.58038, MR 1652906, 10.1006/jmaa.1998.6078 |
Reference:
|
[5] Costa, F. S., Marão, J. A. P. F., Soares, J. C. A., Oliveira, E. C. de: Similarity solution to fractional nonlinear space-time diffusion-wave equation.J. Math. Phys. 56 (2015), Article ID 033507, 16 pages. Zbl 06423086, MR 3390932, 10.1063/1.4915293 |
Reference:
|
[6] Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method.Numer. Methods Partial Differ. Equations 26 (2010), 448-479. Zbl 1185.65187, MR 2605472, 10.1002/num.20460 |
Reference:
|
[7] Fan, E., Hon, Y. C.: A series of travelling wave solutions for two variant Boussinesq equations in shallow water waves.Chaos Solitons Fractals 15 (2003), 559-566. Zbl 1031.76008, MR 1932473, 10.1016/S0960-0779(02)00144-3 |
Reference:
|
[8] Gazizov, R. K., Kasatkin, A. A., Lukashchuk, S. Y.: Symmetry properties of fractional diffusion equations.Phys. Scr. T136 (2009), Article ID 014016, 5 pages. 10.1088/0031-8949/2009/T136/014016 |
Reference:
|
[9] (ed.), R. Hilfer: Applications of Fractional Calculus in Physics.World Scientific, Singapore (2000). Zbl 0998.26002, MR 1890104, 10.1142/3779 |
Reference:
|
[10] Inc, M.: The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method.J. Math. Anal. Appl. 345 (2008), 476-484. Zbl 1146.35304, MR 2422665, 10.1016/j.jmaa.2008.04.007 |
Reference:
|
[11] Kaur, L., Gupta, R. K.: Kawahara equation and modified Kawahara equation with time dependent coefficients: Symmetry analysis and generalized $(\frac{G'}{G})$-expansion method.Math. Methods Appl. Sci. 36 (2013), 584-600. Zbl 1282.35335, MR 3039661, 10.1002/mma.2617 |
Reference:
|
[12] Kaur, L., Wazwaz, A.-M.: Dynamical analysis of lump solutions for $(3+1)$ dimensional generalized KP-Boussinesq equation and its dimensionally reduced equations.Phys. Scr. 93 (2018), Article ID 075203. 10.1088/1402-4896/aac8b8 |
Reference:
|
[13] Kaur, L., Wazwaz, A.-M.: Optical solitons for perturbed Gerdjikov-Ivanov equation.Optik 174 (2018), 447-451. 10.1016/j.ijleo.2018.08.072 |
Reference:
|
[14] Kaur, L., Wazwaz, A.-M.: Bright -- dark optical solitons for Schrödinger-Hirota equation with variable coefficients.Optik 179 (2019), 479-484. 10.1016/j.ijleo.2018.09.035 |
Reference:
|
[15] Kaur, L., Wazwaz, A.-M.: Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation.Int. J. Numer. Methods Heat Fluid Flow 29 (2019), 569-579. MR 4240713, 10.1108/HFF-07-2018-0405 |
Reference:
|
[16] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073, 10.1016/S0304-0208(06)80001-0 |
Reference:
|
[17] Liu, H.: Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations.Stud. Appl. Math. 131 (2013), 317-330. Zbl 1277.35305, MR 3125928, 10.1111/sapm.12011 |
Reference:
|
[18] Mandal, H., Bira, B.: Exact solution and conservation laws of fractional coupled wave interaction equation.Fractals 27 (2019), Article ID 1950019, 9 pages. MR 3957174, 10.1142/S0218348X19500191 |
Reference:
|
[19] Mohamed, S. M., Khaled, A. G.: Numerical solutions for the time fractional variant Bussinesq equation by homotopy analysis method.Sci. Res. Essays 8 (2013), 2163-2170. 10.5897/SRE2013.5460 |
Reference:
|
[20] Morrison, P. J., Meiss, J. D., Cary, J. R.: Scattering of regularized-long-wave solitary waves.Physica D 11 (1984), 324-336. Zbl 0599.76028, MR 0761663, 10.1016/0167-2789(84)90014-9 |
Reference:
|
[21] Munro, S., Parkes, E. J.: The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions.J. Plasma Phys. 62 (1999), 305-317. 10.1017/S0022377899007874 |
Reference:
|
[22] Olver, P. J.: Applications of Lie Groups to Differential Equations.Graduate Texts in Mathematics 107. Springer, New York (1986). Zbl 0588.22001, MR 0836734, 10.1007/978-1-4684-0274-2 |
Reference:
|
[23] Sachs, R. L.: On the integrable variant of the Boussinesq system: Painlevé property, rational solutions, a related many-body system, and equivalence with the AKNS hierarchy.Physica D 30 (1988), 1-27. Zbl 0694.35207, MR 0939264, 10.1016/0167-2789(88)90095-4 |
Reference:
|
[24] Schamel, H.: A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons.J. Plasma Phys. 9 (1973), 377-387. 10.1017/S002237780000756X |
Reference:
|
[25] Singh, K., Gupta, R. K.: Exact solutions of a variant Boussinesq system.Int. J. Eng. Sci. 44 (2006), 1256-1268. Zbl 1213.35362, MR 2273497, 10.1016/j.ijengsci.2006.07.009 |
Reference:
|
[26] Xu, M., Tan, W.: Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics.Sci. China, Ser. G 49 (2006), 257-272. Zbl 1109.26005, 10.1007/s11433-006-0257-2 |
Reference:
|
[27] Yan, Z., Zhang, H.: New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics.Phys. Lett. A 252 (1999), 291-296. Zbl 0938.35130, MR 1669336, 10.1016/S0375-9601(98)00956-6 |
Reference:
|
[28] Zeidan, D., Bira, B.: Weak shock waves and its interaction with characteristic shocks in polyatomic gas.Math. Methods Appl. Sci. 42 (2019), 4679-4687. Zbl 1423.35244, MR 3992933, 10.1002/mma.5675 |
Reference:
|
[29] Zeidan, D., Chau, C. K., Lu, T.-T.: On the characteristic Adomian decomposition method for the Riemann problem.Math. Methods Appl. Sci. (2020). 10.1002/mma.5798 |
Reference:
|
[30] Zeidan, D., Chau, C. K., Lu, T.-T., Zheng, W.-Q.: Mathematical studies of the solution of Burgers' equations by Adomian decomposition method.Math. Methods Appl. Sci. 43 (2020), 2171-2188. Zbl 1447.35012, MR 4078645, 10.1002/mma.5982 |
. |