Previous |  Up |  Next

Article

Keywords:
fractional variant Boussinesq equation; symmetry analysis; exact solution
Summary:
In the present article, we consider a nonlinear time fractional system of variant Boussinesq-Burgers equations. Using Lie group analysis, we derive the infinitesimal groups of transformations containing some arbitrary constants. Next, we obtain the system of optimal algebras for the symmetry group of transformations. Afterward, we consider one of the optimal algebras and construct similarity variables, which reduces the given system of fractional partial differential equations (FPDEs) to fractional ordinary differential equations (FODEs). Further, under the invariance condition we construct the exact solution and the physical significance of the solution is investigated graphically. Finally, we study the conservation law of the system of equations.
References:
[1] Abdel-Salam, E. A.-B., Hassan, G. F.: Multiwave solutions of fractional 4th and 5th order Burgers equations. Turk. J. Phys. 39 (2015), 227-241. DOI 10.3906/fiz-1501-3
[2] Ahmed, E., El-Sayed, A. M. A., El-Saka, H. A. A.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz Rössler, Chua and Chen systems. Phys. Lett., A 358 (2006), 1-4. DOI 10.1016/j.physleta.2006.04.087 | MR 2244918 | Zbl 1142.30303
[3] Bira, B., Sekhar, T. R., Zeidan, D.: Exact solutions for some time-fractional evolution equations using Lie group theory. Math. Methods Appl. Sci. 41 (2018), 6717-6725. DOI 10.1002/mma.5186 | MR 3879269 | Zbl 06986320
[4] Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227 (1998), 81-97. DOI 10.1006/jmaa.1998.6078 | MR 1652906 | Zbl 0932.58038
[5] Costa, F. S., Marão, J. A. P. F., Soares, J. C. A., Oliveira, E. C. de: Similarity solution to fractional nonlinear space-time diffusion-wave equation. J. Math. Phys. 56 (2015), Article ID 033507, 16 pages. DOI 10.1063/1.4915293 | MR 3390932 | Zbl 06423086
[6] Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equations 26 (2010), 448-479. DOI 10.1002/num.20460 | MR 2605472 | Zbl 1185.65187
[7] Fan, E., Hon, Y. C.: A series of travelling wave solutions for two variant Boussinesq equations in shallow water waves. Chaos Solitons Fractals 15 (2003), 559-566. DOI 10.1016/S0960-0779(02)00144-3 | MR 1932473 | Zbl 1031.76008
[8] Gazizov, R. K., Kasatkin, A. A., Lukashchuk, S. Y.: Symmetry properties of fractional diffusion equations. Phys. Scr. T136 (2009), Article ID 014016, 5 pages. DOI 10.1088/0031-8949/2009/T136/014016
[9] (ed.), R. Hilfer: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). DOI 10.1142/3779 | MR 1890104 | Zbl 0998.26002
[10] Inc, M.: The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345 (2008), 476-484. DOI 10.1016/j.jmaa.2008.04.007 | MR 2422665 | Zbl 1146.35304
[11] Kaur, L., Gupta, R. K.: Kawahara equation and modified Kawahara equation with time dependent coefficients: Symmetry analysis and generalized $(\frac{G'}{G})$-expansion method. Math. Methods Appl. Sci. 36 (2013), 584-600. DOI 10.1002/mma.2617 | MR 3039661 | Zbl 1282.35335
[12] Kaur, L., Wazwaz, A.-M.: Dynamical analysis of lump solutions for $(3+1)$ dimensional generalized KP-Boussinesq equation and its dimensionally reduced equations. Phys. Scr. 93 (2018), Article ID 075203. DOI 10.1088/1402-4896/aac8b8
[13] Kaur, L., Wazwaz, A.-M.: Optical solitons for perturbed Gerdjikov-Ivanov equation. Optik 174 (2018), 447-451. DOI 10.1016/j.ijleo.2018.08.072
[14] Kaur, L., Wazwaz, A.-M.: Bright -- dark optical solitons for Schrödinger-Hirota equation with variable coefficients. Optik 179 (2019), 479-484. DOI 10.1016/j.ijleo.2018.09.035
[15] Kaur, L., Wazwaz, A.-M.: Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation. Int. J. Numer. Methods Heat Fluid Flow 29 (2019), 569-579. DOI 10.1108/HFF-07-2018-0405 | MR 4240713
[16] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). DOI 10.1016/S0304-0208(06)80001-0 | MR 2218073 | Zbl 1092.45003
[17] Liu, H.: Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations. Stud. Appl. Math. 131 (2013), 317-330. DOI 10.1111/sapm.12011 | MR 3125928 | Zbl 1277.35305
[18] Mandal, H., Bira, B.: Exact solution and conservation laws of fractional coupled wave interaction equation. Fractals 27 (2019), Article ID 1950019, 9 pages. DOI 10.1142/S0218348X19500191 | MR 3957174
[19] Mohamed, S. M., Khaled, A. G.: Numerical solutions for the time fractional variant Bussinesq equation by homotopy analysis method. Sci. Res. Essays 8 (2013), 2163-2170. DOI 10.5897/SRE2013.5460
[20] Morrison, P. J., Meiss, J. D., Cary, J. R.: Scattering of regularized-long-wave solitary waves. Physica D 11 (1984), 324-336. DOI 10.1016/0167-2789(84)90014-9 | MR 0761663 | Zbl 0599.76028
[21] Munro, S., Parkes, E. J.: The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions. J. Plasma Phys. 62 (1999), 305-317. DOI 10.1017/S0022377899007874
[22] Olver, P. J.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics 107. Springer, New York (1986). DOI 10.1007/978-1-4684-0274-2 | MR 0836734 | Zbl 0588.22001
[23] Sachs, R. L.: On the integrable variant of the Boussinesq system: Painlevé property, rational solutions, a related many-body system, and equivalence with the AKNS hierarchy. Physica D 30 (1988), 1-27. DOI 10.1016/0167-2789(88)90095-4 | MR 0939264 | Zbl 0694.35207
[24] Schamel, H.: A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9 (1973), 377-387. DOI 10.1017/S002237780000756X
[25] Singh, K., Gupta, R. K.: Exact solutions of a variant Boussinesq system. Int. J. Eng. Sci. 44 (2006), 1256-1268. DOI 10.1016/j.ijengsci.2006.07.009 | MR 2273497 | Zbl 1213.35362
[26] Xu, M., Tan, W.: Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics. Sci. China, Ser. G 49 (2006), 257-272. DOI 10.1007/s11433-006-0257-2 | Zbl 1109.26005
[27] Yan, Z., Zhang, H.: New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics. Phys. Lett. A 252 (1999), 291-296. DOI 10.1016/S0375-9601(98)00956-6 | MR 1669336 | Zbl 0938.35130
[28] Zeidan, D., Bira, B.: Weak shock waves and its interaction with characteristic shocks in polyatomic gas. Math. Methods Appl. Sci. 42 (2019), 4679-4687. DOI 10.1002/mma.5675 | MR 3992933 | Zbl 1423.35244
[29] Zeidan, D., Chau, C. K., Lu, T.-T.: On the characteristic Adomian decomposition method for the Riemann problem. Math. Methods Appl. Sci. (2020). DOI 10.1002/mma.5798
[30] Zeidan, D., Chau, C. K., Lu, T.-T., Zheng, W.-Q.: Mathematical studies of the solution of Burgers' equations by Adomian decomposition method. Math. Methods Appl. Sci. 43 (2020), 2171-2188. DOI 10.1002/mma.5982 | MR 4078645 | Zbl 1447.35012
Partner of
EuDML logo