[1] Abdel-Salam, E. A.-B., Hassan, G. F.:
Multiwave solutions of fractional 4th and 5th order Burgers equations. Turk. J. Phys. 39 (2015), 227-241.
DOI 10.3906/fiz-1501-3
[2] Ahmed, E., El-Sayed, A. M. A., El-Saka, H. A. A.:
On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz Rössler, Chua and Chen systems. Phys. Lett., A 358 (2006), 1-4.
DOI 10.1016/j.physleta.2006.04.087 |
MR 2244918 |
Zbl 1142.30303
[3] Bira, B., Sekhar, T. R., Zeidan, D.:
Exact solutions for some time-fractional evolution equations using Lie group theory. Math. Methods Appl. Sci. 41 (2018), 6717-6725.
DOI 10.1002/mma.5186 |
MR 3879269 |
Zbl 06986320
[5] Costa, F. S., Marão, J. A. P. F., Soares, J. C. A., Oliveira, E. C. de:
Similarity solution to fractional nonlinear space-time diffusion-wave equation. J. Math. Phys. 56 (2015), Article ID 033507, 16 pages.
DOI 10.1063/1.4915293 |
MR 3390932 |
Zbl 06423086
[6] Dehghan, M., Manafian, J., Saadatmandi, A.:
Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equations 26 (2010), 448-479.
DOI 10.1002/num.20460 |
MR 2605472 |
Zbl 1185.65187
[8] Gazizov, R. K., Kasatkin, A. A., Lukashchuk, S. Y.:
Symmetry properties of fractional diffusion equations. Phys. Scr. T136 (2009), Article ID 014016, 5 pages.
DOI 10.1088/0031-8949/2009/T136/014016
[11] Kaur, L., Gupta, R. K.:
Kawahara equation and modified Kawahara equation with time dependent coefficients: Symmetry analysis and generalized $(\frac{G'}{G})$-expansion method. Math. Methods Appl. Sci. 36 (2013), 584-600.
DOI 10.1002/mma.2617 |
MR 3039661 |
Zbl 1282.35335
[12] Kaur, L., Wazwaz, A.-M.:
Dynamical analysis of lump solutions for $(3+1)$ dimensional generalized KP-Boussinesq equation and its dimensionally reduced equations. Phys. Scr. 93 (2018), Article ID 075203.
DOI 10.1088/1402-4896/aac8b8
[14] Kaur, L., Wazwaz, A.-M.:
Bright -- dark optical solitons for Schrödinger-Hirota equation with variable coefficients. Optik 179 (2019), 479-484.
DOI 10.1016/j.ijleo.2018.09.035
[15] Kaur, L., Wazwaz, A.-M.:
Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation. Int. J. Numer. Methods Heat Fluid Flow 29 (2019), 569-579.
DOI 10.1108/HFF-07-2018-0405 |
MR 4240713
[18] Mandal, H., Bira, B.:
Exact solution and conservation laws of fractional coupled wave interaction equation. Fractals 27 (2019), Article ID 1950019, 9 pages.
DOI 10.1142/S0218348X19500191 |
MR 3957174
[19] Mohamed, S. M., Khaled, A. G.:
Numerical solutions for the time fractional variant Bussinesq equation by homotopy analysis method. Sci. Res. Essays 8 (2013), 2163-2170.
DOI 10.5897/SRE2013.5460
[21] Munro, S., Parkes, E. J.:
The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions. J. Plasma Phys. 62 (1999), 305-317.
DOI 10.1017/S0022377899007874
[24] Schamel, H.:
A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9 (1973), 377-387.
DOI 10.1017/S002237780000756X
[26] Xu, M., Tan, W.:
Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics. Sci. China, Ser. G 49 (2006), 257-272.
DOI 10.1007/s11433-006-0257-2 |
Zbl 1109.26005
[29] Zeidan, D., Chau, C. K., Lu, T.-T.:
On the characteristic Adomian decomposition method for the Riemann problem. Math. Methods Appl. Sci. (2020).
DOI 10.1002/mma.5798
[30] Zeidan, D., Chau, C. K., Lu, T.-T., Zheng, W.-Q.:
Mathematical studies of the solution of Burgers' equations by Adomian decomposition method. Math. Methods Appl. Sci. 43 (2020), 2171-2188.
DOI 10.1002/mma.5982 |
MR 4078645 |
Zbl 1447.35012