Previous |  Up |  Next

Article

References:
[1] Doktor, P., Ženíšek, A.: The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions. Appl. Math., Praha 51 (2006), 517-547. DOI 10.1007/s10492-006-0019-5 | MR 2261637 | Zbl 1164.46322
[2] Feistauer, M., Ženíšek, A.: Finite element solution of nonlinear elliptic problems. Numer. Math. 50 (1987), 451-475. DOI 10.1007/BF01396664 | MR 0875168 | Zbl 0637.65107
[3] Feistauer, M., Ženíšek, A.: Compactness method in finite element theory of nonlinear elliptic problems. Numer. Math. 52 (1988), 147-163. DOI 10.1007/BF01398687 | MR 0923708 | Zbl 0642.65075
[4] Klimeš, B., Kracík, J., Ženíšek, A.: Foundations of Physics. VUT, Brno (1972), Czech.
[5] Kolář, V., Kratochvíl, J., Leitner, F., Ženíšek, A.: Physical and Mathematical Principles of the Finite Element Method. Rozpravy ČSAV, Prague (1971).
[6] Kolář, V., Kratochvíl, J., Leitner, F., Ženíšek, A.: Calculation of Planar and Spatial Structures by the Finite Element Method. SNTL, Prague (1979), Czech.
[7] Synge, J. L.: The Hypercircle in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Problems. Cambridge University Press, Cambridge (1957). MR 0097605 | Zbl 0079.13802
[8] Ženíšek, A.: The convergence of the finite element method for boundary value problems of the system of elliptic equations. Apl. Mat. 14 (1969), 355-377 Czech. DOI 10.21136/AM.1969.103246 | MR 0245978 | Zbl 0188.22604
[9] Ženíšek, A.: A general theorem on triangular finite $C^{(m)}$-elements. RAIRO. Analyse Numérique 8 (1974), 119-127. DOI 10.1051/m2an/197408R201191 | MR 0388731 | Zbl 0321.41003
[10] Ženíšek, A.: Curved triangular finite $C^m$-elements. Apl. Mat. 23 (1978), 346-377. MR 0502072 | Zbl 0404.35041
[11] Ženíšek, A.: Discrete forms of Friedrichs' inequalities in the finite element method. RAIRO, Anal. Numér. 15 (1981), 265-286. DOI 10.1051/m2an/1981150302651 | MR 0631681 | Zbl 0475.65072
[12] Ženíšek, A.: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Computational Mathematics and Applications. Academic Press, London (1990). MR 1086876 | Zbl 0731.65090
[13] Ženíšek, A.: The finite element method for nonlinear elliptic equations with discontinuous coefficients. Numer. Math. 58 (1990), 51-77. DOI 10.1007/BF01385610 | MR 1069653 | Zbl 0709.65081
[14] Ženíšek, A.: Variational problems in domains with cusp points. Appl. Math., Praha 38 (1993), 381-403. MR 1228514 | Zbl 0790.65094
[15] Ženíšek, A.: Sobolev Spaces and Their Applications in the Finite Element Method. VUTIUM, Brno (2005).
[16] Ženíšek, A.: Relativity in the Pocket. Masaryk University, Brno (2015), Czech.
[17] Ženíšek, A., Hoderová-Zlámalová, J.: Semiregular Hermite tetrahedral finite elements. Appl. Math., Praha 46 (2001), 295-315. DOI 10.1023/A:1013700225774 | MR 1842552 | Zbl 1066.65118
Partner of
EuDML logo