Previous |  Up |  Next

Article

Title: On tangent cones to Schubert varieties in type $E$ (English)
Author: Ignatyev, Mikhail V.
Author: Shevchenko, Aleksandr A.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 2
Year: 2020
Pages: 179-197
Summary lang: English
.
Category: math
.
Summary: We consider tangent cones to Schubert subvarieties of the flag variety $G/B$, where $B$ is a Borel subgroup of a reductive complex algebraic group $G$ of type $E_6$, $E_7$ or $E_8$. We prove that if $w_1$ and $w_2$ form a good pair of involutions in the Weyl group $W$ of $G$ then the tangent cones $C_{w_1}$ and $C_{w_2}$ to the corresponding Schubert subvarieties of $G/B$ do not coincide as subschemes of the tangent space to $G/B$ at the neutral point. (English)
Keyword: flag variety
Keyword: Schubert variety
Keyword: tangent cone
Keyword: involution in the Weyl group
Keyword: Kostant-Kumar polynomial
MSC: 14M15
MSC: 17B22
idZBL: Zbl 07300189
idMR: MR4162929
.
Date available: 2021-03-03T08:49:46Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148702
.
Reference: [1] Billey, S.C.: Kostant polynomials and the cohomology ring for $G/B$.Duke Mathematical Journal, 96, 1, 1999, 205-224, Citeseer, MR 1663931, 10.1215/S0012-7094-99-09606-0
Reference: [2] Bjorner, A., Brenti, F.: Combinatorics of Coxeter groups.231, 2005, Springer Science & Business Media, Graduate Texts in Mathematics {231}. MR 2133266
Reference: [3] Bochkarev, M.A., Ignatyev, M.V., Shevchenko, A.A.: Tangent cones to Schubert varieties in types $A_n$, $B_n$ and $C_n$.Journal of Algebra, 465, 2016, 259-286, Elsevier, MR 3537823, 10.1016/j.jalgebra.2016.07.015
Reference: [4] Bourbaki, N.: Lie groups and Lie algebras. Chapters 4--6.2002, Springer-Verlag, Berlin, Translated from the 1968 French original. MR 1890629
Reference: [5] Sarason, I.G., Billey, S., Sarason, S., Lakshmibai, V.: Singular loci of Schubert varieties.182, 2000, Springer Science & Business Media, MR 1782635
Reference: [6] Deodhar, V.V.: On the root system of a Coxeter group.Communications in Algebra, 10, 6, 1982, 611-630, Taylor & Francis, MR 0647210, 10.1080/00927878208822738
Reference: [7] Dyer, M.J.: The nil Hecke ring and Deodhar's conjecture on Bruhat intervals.Inventiones Mathematicae, 111, 1, 1993, 571-574, Springer, MR 1202136, 10.1007/BF01231299
Reference: [8] Eliseev, D.Yu., Panov, A.N.: Tangent cones of Schubert varieties for $A_n$ of lower rank (in Russian).Zapiski Nauchnykh Seminarov POMI, 394, 2011, 218-225, St. Petersburg Department of Steklov Institute of Mathematics, Russian, English transl.: Journal of Mathematical Sciences 188 (5) (2013), 596--600.. MR 2870177
Reference: [9] Eliseev, D.Yu., Ignatyev, M.V.: Kostant-Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$ (in Russian).Zapiski Nauchnykh Seminarov POMI, 414, 2013, 82-105, Springer, English transl.: Journal of Mathematical Sciences {199} (3) (2014), 289--301.. MR 3470596
Reference: [10] Humphreys, J.E.: Linear algebraic groups.1975, Springer, MR 0396773
Reference: [11] Humphreys, J.E.: Reflection groups and Coxeter groups.1992, Cambridge University Press, MR 1066460
Reference: [12] Ignatyev, M.V., Shevchenko, A.A.: On tangent cones to Schubert varieties in type $D_n$ (in Russian).Algebra i Analiz, 27, 4, 2015, 28-49, English transl.: St. Petersburg Mathematical Journal 27 (4) (2016), 609--623.. MR 3580190
Reference: [13] Kostant, B., Kumar, S.: The nil Hecke ring and cohomology of $G/P$ for a Kac-Moody group $G$.Proceedings of the National Academy of Sciences, 83, 6, 1986, 1543-1545, National Acad Sciences, MR 0831908
Reference: [14] Kostant, B., Kumar, S.: $T$-equivariant $K$-theory of generalized flag varieties.Journal of Differential Geometry, 32, 2, 1990, 549-603, Lehigh University, MR 1072919
Reference: [15] Kumar, S.: The nil Hecke ring and singularity of Schubert varieties.Inventiones Mathematicae, 123, 3, 1996, 471-506, Springer, MR 1383959, 10.1007/BF01232388
Reference: [16] Springer, T.A.: Some remarks on involutions in Coxeter groups.Communications in Algebra, 10, 6, 1982, 631-636, Taylor & Francis, MR 0647211, 10.1080/00927878208822739
Reference: [17] al., W.A. Stein et: Sage Mathematics Software (Version 9.1).2020, The Sage {Development} Team, Available at {http://www.sagemath.org}.
.

Files

Files Size Format View
ActaOstrav_28-2020-2_7.pdf 488.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo