[1] Bellos, A.: Alexova dobrodružství v zemi čísel. Dokořán, Praha, 2015.
[2] Buitrago, A. R.: Polygons, diagonals, and the bronze mean. Nexus Network J. (2007), 321–326.
[3] Douady, S., Couder, Y.:
Phyllotaxis as a physical self organised growth process. Phys. Rev. Lett. 68 (1992), 2098–2101.
DOI 10.1103/PhysRevLett.68.2098
[4] Fowler, D. R., Hanan, J., Prusinkiewicz, R.: Modelling spiral phyllotaxis. Computer & Graphics 13 (1989), 291–296.
[5] Gielis, J.: Inventing the circle: the geometry of nature. Geniaal Publishers, Antwerp, 2003.
[6] Gielis, J.:
A generic geometric transformation that unifies a wide range of natural and abstract shapes. Amer. J. Bot. 90 (2003), 333–338.
DOI 10.3732/ajb.90.3.333
[7] Gielis, J.:
The geometrical beauty of plants. Atlantis Press, Paris, 2017.
MR 3644202
[8] Křížek, M., Somer, L., Šolcová, A.: Kouzlo čísel: od velkých objevů k aplikacím. Academia, Praha, 2018.
[9] Newell, A. C., Shipman, P. D.:
Plants and Fibonacci. J. Stat. Phys. 121 (2005), 937–968.
MR 2192540
[10] Prusinkiewicz, P., Lindenmayer, A.:
Phyllotaxis. In: The Algorithmic Beauty of Plants. The Virtual Laboratory. Springer, New York, 1990.
MR 1067146
[12] Spíchal, L.: Gielisova transformace logaritmické spirály. Pokroky Mat. Fyz. Astronom. 65 (2020), 76–89.
[13] Spíchal, L.: Superelipsa a superformule. Matematika-fyzika-informatika 29 (2020), 60–75.
[14] Spinadel, V. W. de: From the golden mean to chaos. Editorial Nueva Librería, Buenos Aires, 1998.
[15] Spinadel, V. W. de, Paz, J. M.:
A new family of irrational numbers with curious properties. Humanistic Mathematics Network J. 19 (1999), 33–37.
DOI 10.5642/hmnj.199901.19.14
[16] Stewart, I.: Neuvěřitelná čísla profesora Stewarta. Dokořán, Praha, 2019.