[1] Anderson, T. W.:
Estimation of covariance matrices which are linear combinations or whose inverses are linear combinations of given matrices. In: Essays in Probability and Statistics (I.|,M. Mahalanobis, P. C. Rao, C. R. Bose, R. C. Chakravarti and K. J. C. Smith, eds.), Univ. of North Carolina Press, Chapel Hill, 1970, pp. 1-24.
MR 0277057
[2] Bossinger, L., Fang, X., Fourier, G., Hering, M., Lanini, M.:
Toric degenerations of Gr(2,n) and Gr(3,6) via plabic graphs. Ann. Combinator. 22 (2018), 3, 491-512.
DOI 10.1007/s00026-018-0395-z |
MR 3845745
[3] Buneman, P.: The recovery of trees from measures of dissimilarity. In: Mathematics in the Archaeological and Historical Sciences (F. Hodson et al., ed.), Edinburgh University Press, 1971, pp. 387-395.
[8] Felsenstein, J.: Maximum-likelihood estimation of evolutionary trees from continuous characters. Amer. J. Human Genetics 25 (1973), 5, 471-492.
[9] Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry.
[11] Maclagan, D., Sturmfels, B.:
Introduction to Tropical Geometry. American Mathematical Society, Graduate Studies in Mathematics 161, Providence 2015.
DOI 10.1090/gsm/161 |
MR 3287221
[12] Michałek, M., Sturmfels, B., Uhler, C., Zwiernik, P.:
Exponential varieties. Proc. London Math. Soc. (3), 112 (2016), 1, 27-56.
DOI 10.1112/plms/pdv066 |
MR 3458144
[15] Sullivant, S., Talaska, K., Draisma, J.:
Trek separation for Gaussian graphical models. Ann. Stat. 38 (2010), 3, 1665-1685.
DOI 10.1214/09-aos760 |
MR 2662356
[16] Varga, R. S., Nabben, R.:
On symmetric ultrametric matrices. Numerical Linear Algebra (L. Reichel et al., eds.), de Gruyter, New York 1993, pp. 193-199.
DOI 10.1515/9783110857658.193 |
MR 1244160
[17] Zwiernik, P., Uhler, C., Richards, D.:
Maximum likelihood estimation for linear Gaussian covariance models. J. Roy. Stat. Soc.: Series B (Stat. Method.) 79 (2017), 4, 1269-1292.
DOI 10.1111/rssb.12217 |
MR 3689318