Previous |  Up |  Next

Article

Keywords:
tropical probability; entropic cone; non-Shannon inequality
Summary:
In a series of articles, we have been developing a theory of tropical diagrams of probability spaces, expecting it to be useful for information optimization problems in information theory and artificial intelligence. In this article, we give a summary of our work so far and apply the theory to derive a dimension-reduction statement about the shape of the entropic cone.
References:
[1] Ahlswede, R., Körner, J.: On common information and related characteristics of correlated information sources. Preprint, 7th Prague Conference on Information Theory, 1974. MR 2495193
[2] Ahlswede, R., Körner, J.: On common information and related characteristics of correlated information sources. In: General Theory of Information Transfer and Combinatorics (R. Ahlswede et al., eds.), Lecture Notes in Computer Science 4123, Springer, Berlin, Heidelberg, 2006. MR 2495193
[3] Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., Ay, N.: Quantifying unique information. Entropy 16 (2014), 4, 2161-2183. DOI 10.3390/e16042161 | MR 3195286
[4] Chan, T. H., Yeung, R. W: On a relation between information inequalities and group theory. IEEE Trans. Inform. Theory 48 (2002), 7, 1992-1995. DOI 10.1109/tit.2002.1013138 | MR 1930005
[5] Dougherty, R., Freiling, Ch., Zeger, K.: Six new non-shannon information inequalities. In: 2006 IEEE International Symposium on Information Theory, IEEE, 2006, pp. 233-236. DOI 10.1109/isit.2006.261840 | MR 2321860
[6] Dougherty, R., Freiling, Ch., Zeger, K.: Non-Shannon information inequalities in four random variables. arXiv preprint arXiv:1104.3602, 2011. MR 2321860
[7] Gromov, M.: In a search for a structure, part 1: On entropy.
[8] Kovačević, M., Stanojević, I., Šenk, V.: On the hardness of entropy minimization and related problems. In: 2012 IEEE Information Theory Workshop, IEEE, 2012, pp. 512-516. DOI 10.3390/e22040407
[9] Leinster, T.: Basic Category Theory, volume 143. MR 3307165
[10] Matúš, F.: Probabilistic conditional independence structures and matroid theory: background 1. Int. J. General System 22 (1993), 2, 185-196. DOI 10.1080/03081079308935205
[11] Matúš, F.: Two constructions on limits of entropy functions. IEEE Trans. Inform. Theory 53 (2006), 1, 320-330. DOI 10.1109/tit.2006.887090 | MR 2292891
[12] Matúš, F.: Infinitely many information inequalities. In: IEEE International Symposium on Information Theory, ISIT 2007, IEEE, pp. 41-44. DOI 10.1109/isit.2007.4557201
[13] Matúš, F., Csirmaz, L.: Entropy region and convolution. IEEE Trans. Inform. Theory 62 (2016), 11, 6007-6018. DOI 10.1109/tit.2016.2601598 | MR 3565097
[14] Matúš, F., Studený, M.: Conditional independences among four random variables i. Combinat. Probab. Comput. 4 (1995), 3, 269-278. DOI 10.1017/s0963548300001644 | MR 1356579
[15] Makarychev, K., Makarychev, Y., Romashchenko, A., Vereshchagin, N.: A new class of non-Shannon-type inequalities for entropies. Comm. Inform. Syst. 2 (2002), 2, 147-166. DOI 10.4310/cis.2002.v2.n2.a3 | MR 1958013
[16] Matveev, R., Portegies, J. W: Asymptotic dependency structure of multiple signals. Inform. Geometry 1 (2018), 2, 237-285. DOI 10.1007/s41884-018-0013-5 | MR 4010749
[17] Matveev, R., Portegies, J. W.: Arrow Contraction and Expansion in Tropical Diagrams. arXiv e-prints, page arXiv:1905.05597, 2019.
[18] Matveev, R., Portegies, J. W.: Conditioning in tropical probability theory. arXiv e-prints, page arXiv:1905.05596, 2019.
[19] Matveev, R., Portegies, J. W.: Tropical diagrams of probability spaces. arXiv e-prints, page arXiv:1905.04375, 2019. MR 4117580
[20] Slepian, D., Wolf, J.: Noiseless coding of correlated information sources. IEEE Trans. Inform. Theory 19 (1973), 4, 471-480. DOI 10.1109/tit.1973.1055037 | MR 0421858
[21] Vidyasagar, M.: A metric between probability distributions on finite sets of different cardinalities and applications to order reduction. IEEE Trans. Automat. Control 57 (2012), 10, 2464-2477. DOI 10.1109/tac.2012.2188423 | MR 2991650
[22] Wyner, A.: The common information of two dependent random variables. IEEE Trans. Inform. Theory 21 (1975), 2, 163-179. DOI 10.1109/tit.1975.1055346 | MR 0363679
[23] Yeung, R. W.: Information Theory and Network Coding. Springer Science and Business Media, 2008. DOI 10.1007/978-0-387-79234-7_1
[24] Zhang, Z., Yeung, R. W.: A non-shannon-type conditional inequality of information quantities. IEEE Trans. Inform. Theory 43 (1997), 6, 1982-1986. DOI 10.1109/18.641561 | MR 1481054
[25] Zhang, Z., Yeung, R. W.: On characterization of entropy function via information inequalities. IEEE Trans. Inform. Theory 44 (1998), 4, 1440-1452. DOI 10.1109/18.681320 | MR 1665794
Partner of
EuDML logo