[1] Baker, A., Davenport, H.:
The equations $3x^2-2=y^2$ and $8x^2-7=z^2$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.
MR 0248079
[3] Bravo, J.J., Herrera, J.L., Luca, F.:
On a generalization of the Pell sequence. doi:10.21136/MB.2020.0098-19 on line in Math. Bohem.
DOI 10.21136/MB.2020.0098-19
[4] Bravo, J.J., Luca, F.:
On a conjecture about repdigits in $k-$generalized Fibonacci sequences. Publ. Math. Debrecen 82 (3–4) (2013), 623–639.
DOI 10.5486/PMD.2013.5390 |
MR 3066434
[6] Dujella, A., Pethö, A.:
A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (195) (1998), 291–306.
MR 1645552 |
Zbl 0911.11018
[7] Faye, B., Luca, F.:
Pell and Pell-Lucas numbers with only one distinct digits. Ann. of Math. 45 (2015), 55–60.
MR 3438812
[9] Kiliç, E.:
On the usual Fibonacci and generalized order$-k$ Pell numbers. Ars Combin 109 (2013), 391–403.
MR 2426404
[10] Kiliç, E., Taşci, D.:
The generalized Binet formula, representation and sums of the generalized order$-k$ Pell numbers. Taiwanese J. Math. 10 (6) (2006), 1661–1670.
DOI 10.11650/twjm/1500404581 |
MR 2275152
[11] Koshy, T.:
Fibonacci and Lucas Numbers with Applications. Pure and Applied Mathematics, Wiley-Interscience Publications, New York, 2001.
MR 1855020
[12] Luca, F.:
Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 57 (2) (2000), 243–254.
MR 1759818 |
Zbl 0958.11007
[13] Marques, D.:
On $k$-generalized Fibonacci numbers with only one distinct digit. Util. Math. 98 (2015), 23–31.
MR 3410879
[14] Matveev, E.M.:
An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (6) (2000), 125–180, translation in Izv. Math. 64 (2000), no. 6, 1217–1269.
MR 1817252