Previous |  Up |  Next

Article

Keywords:
Lie group; Poisson manifolds; Riemannian metric
Summary:
A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in [4]. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.
References:
[1] Ait Haddou, M., Boucetta, M., Lebzioui, H.: Left-invariant Lorentzian flat metrics on Lie groups. J. Lie Theory 22 (1) (2012), 269–289. MR 2933940
[2] Boucetta, M.: Compatibilité des structures pseudo-riemanniennes et des structures de Poisson. C.R. Acad. Sci. Paris Sér. I 333 (2001), 763–768. DOI 10.1016/S0764-4442(01)02132-2 | MR 1868950
[3] Boucetta, M.: Riemann-Poisson manifolds and Kähler-Riemann foliations. C.R. Acad. Sci. Paris, Sér. I 336 (2003), 423–428. DOI 10.1016/S1631-073X(03)00079-7 | MR 1979358
[4] Boucetta, M.: Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras. Differential Geom. Appl. 20 (2004), 279–291. DOI 10.1016/j.difgeo.2003.10.013 | MR 2053915
[5] Boucetta, M.: On the Riemann-Lie algebras and Riemann-Poisson Lie groups. J. Lie Theory 15 (1) (2005), 183–195. MR 2115235
[6] Deninger, C., Singhof, W.: Real polarizable hodge structures arising from foliation. Ann. Global Anal. Geom. 21 (2002), 377–399. DOI 10.1023/A:1015652906096 | MR 1910458
[7] Dufour, J.P., Zung, N.T.: Poisson Structures and Their Normal Forms. Progress in Mathematics, vol. 242, Birkhäuser Verlag, 2005. MR 2178041
[8] Fernandes, R.L.: Connections in Poisson Geometry 1: Holonomy and invariants. J. Differential Geom. 54 (2000), 303–366. DOI 10.4310/jdg/1214341648 | MR 1818181
[9] Ha, K.Y., Lee, J.B.: Left invariant metrics and curvatures on simply connected three dimensional Lie groups. Math. Nachr. 282 (2009), 868–898. DOI 10.1002/mana.200610777 | MR 2530885
[10] Hawkin, E.: The structure of noncommutative deformations. J. Differential Geom. 77 (2007), 385–424. DOI 10.4310/jdg/1193074900 | MR 2362320
[11] Milnor, J.: Curvatures of left invariant metrics on Lie Groups. Adv. Math. 21 (1976), 293–329. DOI 10.1016/S0001-8708(76)80002-3 | MR 0425012
[12] Ovando, G.: Invariant pseudo-Kähler metrics in dimension four. J. Lie Theory 16 (2006), 371–391. MR 2197598
[13] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Progress in Mathematics, vol. 118, Birkhäuser, Berlin, 1994. MR 1269545 | Zbl 0810.53019
Partner of
EuDML logo