[3] Dereudre, D., Drouilhet, R., Georgii, H. O.:
Existence of Gibbsian point processes with geometry-dependent interactions. Probab. Theory Rel. 153 (2012), 3, 643-670.
DOI 10.1007/s00440-011-0356-5 |
MR 2948688
[4] Dereudre, D., Lavancier, F.:
Practical simulation and estimation for Gibbs Delaunay-Voronoi tessellations with geometric hardcore interaction. Comput. Stat. Data An. 55 (2011), 1, 498-519.
DOI 10.1016/j.csda.2010.05.018 |
MR 2736572
[5] Fropuff: The vertex configuration of a tetrahedral-octahedral honeycomb.
[6] Hadamard, P.: Résolution d'une question relative aux déterminants. Bull. Sci. Math. 17 (1893), 3, 240-246.
[8] Møller, J., Waagepetersen, R. P.:
Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton 2003.
DOI 10.1201/9780203496930 |
MR 2004226
[9] Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.:
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. J. Willey and Sons, Chichester 2009.
DOI 10.2307/2687299 |
MR 1770006
[11] Quey, R., Renversade, L.:
Optimal polyhedral description of 3{D} polycrystals: Method and application to statistical and synchrotron {X}-ray diffraction data. Comput. Method Appl. M 330 (2018), 308-333.
DOI 10.1016/j.cma.2017.10.029 |
MR 3759098
[12] Rycroft, C.:
Voro++: A three-dimensional Voronoi cell library in C++. Chaos 19 (2009), 041111.
DOI 10.1063/1.3215722
[13] Seitl, F., Petrich, L., Staněk, J., III, C. E. Krill, Schmidt, V., Beneš, V.:
Exploration of Gibbs-Laguerre Tessellations for Three-Dimensional Stochastic Modeling. Methodol. Comput. Appl. Probab. (2020).
DOI 10.1007/s11009-019-09757-x
[14] Sommerville, D. M. Y.:
An Introduction to the Geometry of N Dimensions. Methuen and Co, London 1929.
MR 0100239