[1] Algoet, P.:
The strong low of large numbers for sequential decisions under uncertainity. IEEE Trans. Inform. Theory 40 (1994), 609-634.
DOI 10.1109/18.335876 |
MR 1295308
[2] Bahr, B. von, Esseen, C. G.:
Inequalities for the $r$th absolute moment of a sum of random variables, $1\leq r \leq 2$. Ann. Math. Statist. 36 (1965), 299-303.
DOI 10.1214/aoms/1177700291 |
MR 0170407
[4] Feller, W.:
An Introduction to Probability Theory and its Applications Vol. I. Third edition. John Wiley and Sons, Inc., New York - London - Sydney 1968.
MR 0228020
[5] Ghahramani, S.: Fundamentals of Probability with Stochastic Processes. Third edition. Pearson Prentice Hall, Upper Saddle River NJ, 2005.
[7] Khudanpur, S., Narayan, P.:
Order estimation for a special class of hidden Markov sources and binary renewal processses. IEEE Trans. Inform. Theory 48 (2002), 1704-1713.
DOI 10.1109/tit.2002.1003850 |
MR 1909484
[8] Marcinkiewicz, J., Zygmund, A.:
Sur les foncions independantes. Fund. Math. 28 (1937), 60-90.
MR 0115885
[9] Morvai, G.:
Guessing the output of a stationary binary time series. In: Foundations of Statistical Inference (Y. Haitovsky, H. R. Lerche and Y. Ritov, eds.), Physika-Verlag 2003, pp. 207-215.
MR 2017826
[14] Morvai, G., Weiss, B.:
Estimating the residual waiting time for binary stationary time series. In: ITW 2009, IEEE Information Theory Workshop on Networking and Information Theory, 2009 pp. 67-70.
DOI 10.1109/itwnit.2009.5158543 |
MR 3301776
[20] Ryabko, B. Y.:
Prediction of random sequences and universal coding. Probl. Inform. Trans. 24 (1988), 87-96.
MR 0955983 |
Zbl 0666.94009
[22] Shiryayev, A. N.:
Probability. Second edition. Springer-Verlag, New York 1996.
MR 1368405