Previous |  Up |  Next

Article

Title: Exact simultaneous location-scale tests for two shifted exponential samples (English)
Author: Mukherjee, Amitava
Author: Chong, Zhi Lin
Author: Marozzi, Marco
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 6
Year: 2019
Pages: 943-960
Summary lang: English
.
Category: math
.
Summary: The failure time distribution for various items often follows a shifted (two-parameter) exponential model and not the traditional (one-parameter) exponential model. The shifted exponential is very useful in practice, in particular in the engineering, biomedical sciences and industrial quality control when modeling time to event or survival data. The open problem of simultaneous testing for differences in origin and scale parameters of two shifted exponential distributions is addressed. Two exact tests are proposed using maximum likelihood estimators. They are based on the combination of two statistics following a maximum-type and a distance-type approach. The exact null distributions of the respective test statistics are derived analytically. Small sample type-one error rate and power of the tests are studied numerically. We showed that the test based on the maximum type combination (the Max test) should be preferred being generally more powerful than the test based on the distance type combination (the Distance test). An application to a biomedical experiment is discussed. (English)
Keyword: hypothesis testing
Keyword: failure time model
Keyword: simultaneous testing
Keyword: shifted exponential
Keyword: type-one error rate
Keyword: power
MSC: 62F03
MSC: 62N05
idZBL: Zbl 07217220
idMR: MR4077138
DOI: 10.14736/kyb-2019-6-0943
.
Date available: 2020-05-20T15:11:23Z
Last updated: 2020-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/148085
.
Reference: [1] J., Ahmadi,, K., MirMostafaee, S. M. T.: Prediction intervals for future records and order statistics coming from two parameter exponential distribution..Stat. Probab. Lett. 79 (2009), 977-983. MR 2509490, 10.1016/j.spl.2008.12.002
Reference: [2] A., Baklizi,: Interval estimation of the stress-strength reliability in the two-parameter exponential distribution based on records..J. Stat. Comput. Simul. 84 (2014), 2670-2679. MR 3250965, 10.1080/00949655.2013.816307
Reference: [3] A., Chaturvedi,, V., Sharma,: A note on the estimation of P(Y$>$X) in two-parameter exponential distributions..Statistics 44 (2010), 73-75. MR 2674408, 10.1080/02331880902760629
Reference: [4] C., Cohen, A., R., Helm, F.: Estimation in the exponential distribution..Technometrics 15 (1973), 415-418. MR 0375603, 10.1080/00401706.1973.10489054
Reference: [5] N., Ebrahimi,: Estimating the parameters of an exponential..J. Stat. Plan. Inference 14 (1986), 255-261. MR 0852530, 10.1016/0378-3758(86)90163-1
Reference: [6] M., Engelhardt,, J., Bain, L.: Tolerance limits and confidence limits on reliability for the two-parameter exponential distribution..Technometrics 20 (1978), 37-39. 10.1080/00401706.1978.10489615
Reference: [7] A., Ganguly,, S., Mitra,, D., Samanta,, D., Kundu,: Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring..J. Stat. Plan. Inference 142 (2012), 613-625. MR 2853570, 10.1016/j.jspi.2011.08.001
Reference: [8] S., Huang,, A., Mukherjee,, J., Yang,: Two CUSUM schemes for simultaneous monitoring of parameters of a shifted exponential time to events..Qual. Reliab. Eng. Int. 34 (2018), 6, 1158-1173. 10.1002/qre.2314
Reference: [9] L., Johnson, N., S., Kotz,: Distributions in Statistics, Vol. 1: Continuous Univariate Distributions..Houghton Mifflin, Boston 1970. MR 0270475
Reference: [10] C., Kao, S.: Normalization of the origin-shifted exponential distribution for control chart construction..J. Appl. Stat. 37 (2010), 1067-1087. MR 2751922, 10.1080/02664760802571333
Reference: [11] K., Krishnamoorthy,, Y., Xia,: Confidence intervals for a two-parameter exponential distribution: one- and two-sample problems..Commun. Stat. Theory Methods 47 (2018), 935-952. MR 3750706, 10.1080/03610926.2017.1313983
Reference: [12] K., Krishnamoorthy,, S., Mukherjee,, H., Guo,: Inference on reliability in two-parameter exponential stress-strength model..Metrika 65 (2007), 261-273. MR 2299551, 10.1007/s00184-006-0074-7
Reference: [13] J., Li,, W., Song,, J., Shi,: Parametric bootstrap simultaneous confidence intervals for differences of means from several two-parameter exponential distributions..Stat. Probab. Lett. 106 (2015), 39-45. MR 3389968, 10.1016/j.spl.2015.07.002
Reference: [14] A., Mukherjee,, K., McCracken, A., S., Chakraborti,: Control Charts for simultaneous monitoring of parameters of a shifted exponential distribution..J. Qual. Technol. 47 (2015), 176-192. 10.1016/j.spl.2015.07.002
Reference: [15] M., Pal,, A., Masoom, M., J., Woo,: Estimation and testing of $P(Y > X)$ in two parameter exponential distributions..Statistics 39 (2005), 415-428. MR 2207457, 10.1080/02331880500274031
Reference: [16] Z., Raqab, M.: Approximate maximum likelihood predictors of future failure times of shifted exponential distributions under multiple type II censoring..Stat. Methods Appl. 13 (2004), 43-54. MR 2081964, 10.1007/s10260-004-0084-4
Reference: [17] A., Roy,, T., Mathew,: Reliability function of a two-parameter exponential distribution..J. Stat. Plan .Inference 128 (2005), 509-517. MR 2102773, 10.1016/j.jspi.2003.11.012
Reference: [18] S., Sangnawakij,, S., Niwitpong,: Confidence intervals for coefficients of variation in two-parameter exponential distributions..Commun. Stat. Simul. Comp. 46 (2017), 6618-6630. MR 3740801, 10.1080/03610918.2016.1208236
Reference: [19] N., Schenk,, M., Burkschat,, E., Cramer,, U., Kamps,: Bayesian estimation and prediction with multiply Type-II censored samples of sequential order statistics from one-and two-parameter exponential distributions..J. Stat. Plan. Inference 141 (2011), 1575-1587. MR 2747926, 10.1016/j.jspi.2010.11.009
Reference: [20] P., Singh,, A., Abebe,: Comparing several exponential populations with more than one control..Stat. Methods Appl. 18 (2009), 359-374. MR 2529262, 10.1007/s10260-008-0092-x
Reference: [21] A., Tanis, E.: Linear forms in the order statistics from an exponential distribution..Ann. Math. Stat. 35 (1964), 270-276. MR 0158481, 10.1214/aoms/1177703749
Reference: [22] van, Zyl, R., der, Merwe, A. J. van: Schemes for the two-parameter exponential distribution..Commun. Stat. Theory Methods DOI:10.1080/03610926.2018.1440307. MR 3960394, 10.1080/03610926.2018.1440307
Reference: [23] D., Varde, S.: Life testing and reliability estimation for the two parameter exponential distribution..J. Amer. Stat. Assoc. 64 (1969), 621-631. MR 0246475, 10.1080/01621459.1969.10501000
Reference: [24] Z., Wang,, T., Ng, H. K.: A comparative study of tests for paired lifetime data..Lifetime Data Anal. 12 (2006), 505-522. MR 2338964, 10.1007/s10985-006-9026-9
Reference: [25] I., Weissman,: Sum of squares of uniform random variables..Stat. Probab. Lett. 129 (2017), 147-154. MR 3688527, 10.1016/j.spl.2017.05.018
Reference: [26] H.-M., Lee, J.-W. Wu., C.-L., Lei,: Computational testing algorithmic procedure of assessment for lifetime performance index of products with two-parameter exponential distribution..Appl. Math. Comput. 190 (2007), 116-125. MR 2335434, 10.1016/j.amc.2007.01.010
Reference: [27] S.-F., Wu,: Interval estimation for the two-parameter exponential distribution under progressive censoring..Qual. Quant. 44 (2010), 181-189. 10.1007/s11135-008-9187-6
.

Files

Files Size Format View
Kybernetika_55-2019-6_3.pdf 516.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo