Title:
|
Exact simultaneous location-scale tests for two shifted exponential samples (English) |
Author:
|
Mukherjee, Amitava |
Author:
|
Chong, Zhi Lin |
Author:
|
Marozzi, Marco |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
55 |
Issue:
|
6 |
Year:
|
2019 |
Pages:
|
943-960 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The failure time distribution for various items often follows a shifted (two-parameter) exponential model and not the traditional (one-parameter) exponential model. The shifted exponential is very useful in practice, in particular in the engineering, biomedical sciences and industrial quality control when modeling time to event or survival data. The open problem of simultaneous testing for differences in origin and scale parameters of two shifted exponential distributions is addressed. Two exact tests are proposed using maximum likelihood estimators. They are based on the combination of two statistics following a maximum-type and a distance-type approach. The exact null distributions of the respective test statistics are derived analytically. Small sample type-one error rate and power of the tests are studied numerically. We showed that the test based on the maximum type combination (the Max test) should be preferred being generally more powerful than the test based on the distance type combination (the Distance test). An application to a biomedical experiment is discussed. (English) |
Keyword:
|
hypothesis testing |
Keyword:
|
failure time model |
Keyword:
|
simultaneous testing |
Keyword:
|
shifted exponential |
Keyword:
|
type-one error rate |
Keyword:
|
power |
MSC:
|
62F03 |
MSC:
|
62N05 |
idZBL:
|
Zbl 07217220 |
idMR:
|
MR4077138 |
DOI:
|
10.14736/kyb-2019-6-0943 |
. |
Date available:
|
2020-05-20T15:11:23Z |
Last updated:
|
2020-08-26 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148085 |
. |
Reference:
|
[1] J., Ahmadi,, K., MirMostafaee, S. M. T.: Prediction intervals for future records and order statistics coming from two parameter exponential distribution..Stat. Probab. Lett. 79 (2009), 977-983. MR 2509490, 10.1016/j.spl.2008.12.002 |
Reference:
|
[2] A., Baklizi,: Interval estimation of the stress-strength reliability in the two-parameter exponential distribution based on records..J. Stat. Comput. Simul. 84 (2014), 2670-2679. MR 3250965, 10.1080/00949655.2013.816307 |
Reference:
|
[3] A., Chaturvedi,, V., Sharma,: A note on the estimation of P(Y$>$X) in two-parameter exponential distributions..Statistics 44 (2010), 73-75. MR 2674408, 10.1080/02331880902760629 |
Reference:
|
[4] C., Cohen, A., R., Helm, F.: Estimation in the exponential distribution..Technometrics 15 (1973), 415-418. MR 0375603, 10.1080/00401706.1973.10489054 |
Reference:
|
[5] N., Ebrahimi,: Estimating the parameters of an exponential..J. Stat. Plan. Inference 14 (1986), 255-261. MR 0852530, 10.1016/0378-3758(86)90163-1 |
Reference:
|
[6] M., Engelhardt,, J., Bain, L.: Tolerance limits and confidence limits on reliability for the two-parameter exponential distribution..Technometrics 20 (1978), 37-39. 10.1080/00401706.1978.10489615 |
Reference:
|
[7] A., Ganguly,, S., Mitra,, D., Samanta,, D., Kundu,: Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring..J. Stat. Plan. Inference 142 (2012), 613-625. MR 2853570, 10.1016/j.jspi.2011.08.001 |
Reference:
|
[8] S., Huang,, A., Mukherjee,, J., Yang,: Two CUSUM schemes for simultaneous monitoring of parameters of a shifted exponential time to events..Qual. Reliab. Eng. Int. 34 (2018), 6, 1158-1173. 10.1002/qre.2314 |
Reference:
|
[9] L., Johnson, N., S., Kotz,: Distributions in Statistics, Vol. 1: Continuous Univariate Distributions..Houghton Mifflin, Boston 1970. MR 0270475 |
Reference:
|
[10] C., Kao, S.: Normalization of the origin-shifted exponential distribution for control chart construction..J. Appl. Stat. 37 (2010), 1067-1087. MR 2751922, 10.1080/02664760802571333 |
Reference:
|
[11] K., Krishnamoorthy,, Y., Xia,: Confidence intervals for a two-parameter exponential distribution: one- and two-sample problems..Commun. Stat. Theory Methods 47 (2018), 935-952. MR 3750706, 10.1080/03610926.2017.1313983 |
Reference:
|
[12] K., Krishnamoorthy,, S., Mukherjee,, H., Guo,: Inference on reliability in two-parameter exponential stress-strength model..Metrika 65 (2007), 261-273. MR 2299551, 10.1007/s00184-006-0074-7 |
Reference:
|
[13] J., Li,, W., Song,, J., Shi,: Parametric bootstrap simultaneous confidence intervals for differences of means from several two-parameter exponential distributions..Stat. Probab. Lett. 106 (2015), 39-45. MR 3389968, 10.1016/j.spl.2015.07.002 |
Reference:
|
[14] A., Mukherjee,, K., McCracken, A., S., Chakraborti,: Control Charts for simultaneous monitoring of parameters of a shifted exponential distribution..J. Qual. Technol. 47 (2015), 176-192. 10.1016/j.spl.2015.07.002 |
Reference:
|
[15] M., Pal,, A., Masoom, M., J., Woo,: Estimation and testing of $P(Y > X)$ in two parameter exponential distributions..Statistics 39 (2005), 415-428. MR 2207457, 10.1080/02331880500274031 |
Reference:
|
[16] Z., Raqab, M.: Approximate maximum likelihood predictors of future failure times of shifted exponential distributions under multiple type II censoring..Stat. Methods Appl. 13 (2004), 43-54. MR 2081964, 10.1007/s10260-004-0084-4 |
Reference:
|
[17] A., Roy,, T., Mathew,: Reliability function of a two-parameter exponential distribution..J. Stat. Plan .Inference 128 (2005), 509-517. MR 2102773, 10.1016/j.jspi.2003.11.012 |
Reference:
|
[18] S., Sangnawakij,, S., Niwitpong,: Confidence intervals for coefficients of variation in two-parameter exponential distributions..Commun. Stat. Simul. Comp. 46 (2017), 6618-6630. MR 3740801, 10.1080/03610918.2016.1208236 |
Reference:
|
[19] N., Schenk,, M., Burkschat,, E., Cramer,, U., Kamps,: Bayesian estimation and prediction with multiply Type-II censored samples of sequential order statistics from one-and two-parameter exponential distributions..J. Stat. Plan. Inference 141 (2011), 1575-1587. MR 2747926, 10.1016/j.jspi.2010.11.009 |
Reference:
|
[20] P., Singh,, A., Abebe,: Comparing several exponential populations with more than one control..Stat. Methods Appl. 18 (2009), 359-374. MR 2529262, 10.1007/s10260-008-0092-x |
Reference:
|
[21] A., Tanis, E.: Linear forms in the order statistics from an exponential distribution..Ann. Math. Stat. 35 (1964), 270-276. MR 0158481, 10.1214/aoms/1177703749 |
Reference:
|
[22] van, Zyl, R., der, Merwe, A. J. van: Schemes for the two-parameter exponential distribution..Commun. Stat. Theory Methods DOI:10.1080/03610926.2018.1440307. MR 3960394, 10.1080/03610926.2018.1440307 |
Reference:
|
[23] D., Varde, S.: Life testing and reliability estimation for the two parameter exponential distribution..J. Amer. Stat. Assoc. 64 (1969), 621-631. MR 0246475, 10.1080/01621459.1969.10501000 |
Reference:
|
[24] Z., Wang,, T., Ng, H. K.: A comparative study of tests for paired lifetime data..Lifetime Data Anal. 12 (2006), 505-522. MR 2338964, 10.1007/s10985-006-9026-9 |
Reference:
|
[25] I., Weissman,: Sum of squares of uniform random variables..Stat. Probab. Lett. 129 (2017), 147-154. MR 3688527, 10.1016/j.spl.2017.05.018 |
Reference:
|
[26] H.-M., Lee, J.-W. Wu., C.-L., Lei,: Computational testing algorithmic procedure of assessment for lifetime performance index of products with two-parameter exponential distribution..Appl. Math. Comput. 190 (2007), 116-125. MR 2335434, 10.1016/j.amc.2007.01.010 |
Reference:
|
[27] S.-F., Wu,: Interval estimation for the two-parameter exponential distribution under progressive censoring..Qual. Quant. 44 (2010), 181-189. 10.1007/s11135-008-9187-6 |
. |