[1] Abdelaziz, A. Y., Ali, E. S., Elazim, S. M. A.:
Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems. Energy 101 (2016), 506-518.
DOI 10.1016/j.energy.2016.02.041
[2] Chakri, A., Khelif, R., Benouaret, M., al., et:
New directional bat algorithm for continuous optimization problems. Expert Systems Appl. 69 (2017), 159-175.
DOI 10.1016/j.eswa.2016.10.050
[3] Chen, C. L., Vempati, V. S., Aljaber, N.:
An application of genetic algorithms for flow shop problems. Europ. J. Oper. Res. 80 (1995), 389-396.
DOI 10.1016/0377-2217(93)e0228-p
[4] Cheng, C. T., Liao, S. L., Tang, Z. T., al., et:
Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch. Energy Conversion Management 50 (2009), 3007-3014.
DOI 10.1016/j.enconman.2009.07.020
[5] Chen, F., Zhou, J., Wang, C., al., et:
A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching. Energy 121 (2017), 276-291.
DOI 10.1016/j.energy.2017.01.010
[7] Dorigo, M., Maniezzo, V., Colorni, A.:
Ant system: optimization by a colony of cooperating agents. IEEE Trans. Systems, Man, Cybernetics, Part B (Cybernetics) 26 (1996), 29-41.
DOI 10.1109/3477.484436
[8] Fahrioglu, M., Alvarado, F. L.:
Designing incentive compatible contracts for effective demand management. IEEE Trans. Power Systems 15 (2000), 1255-1260.
DOI 10.1109/59.898098
[9] Fahrioglu, M., Alvarado, F. L.:
Using utility information to calibrate customer demand management behavior models. IEEE Trans. Power Systems 16 (2001), 317-322.
DOI 10.1109/59.918305
[10] Gan, C., Cao, W., Wu, M., al., et:
A new bat algorithm based on iterative local search and stochastic inertia weight. Expert Systems Appl. 104 (2018), 202-212.
DOI 10.1016/j.eswa.2018.03.015
[12] Gandomi, A. H., Yang, X. S., Alavi, A. H., al., et:
Bat algorithm for constrained optimization tasks. Neural Computing Appl. 22 (2013), 1239-1255.
DOI 10.1007/s00521-012-1028-9
[13] Ghasemi, M., Ghavidel, S., Ghanbarian, M. M., al., et:
Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy 78 (2014), 276-289.
DOI 10.1016/j.energy.2014.10.007
[14] Guo, Y., Tong, L., Wu, W., al., et:
Coordinated Multi-area Economic Dispatch via Critical Region Projection. IEEE Trans. Power Systems 32 (2017), 3736-3746.
DOI 10.1109/tpwrs.2017.2655442
[15] Guo, F., Wen, C., Mao, J., al., et:
Distributed economic dispatch for dmart grids with random wind power. IEEE Trans. Smart Grid 7 (2016), 1572-1583.
DOI 10.1109/tsg.2015.2434831
[16] He, X. S., Ding, W. J., Yang, X. S.:
Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Comput. Appl. 25 (2014), 459-468.
DOI 10.1007/s00521-013-1518-4
[17] Hetzer, J., Yu, D. C., Bhattarai, K.:
An economic dispatch model incorporating wind power. IEEE Trans. Energy Conversion 23 (2008), 603-611.
DOI 10.1109/tec.2007.914171
[18] Jabr, R., Coonick, A. H., Cory, B. J.:
A homogeneous linear programming algorithm for the security constrained economic dispatch problem. IEEE Trans. Power Syst. 15 (2000), 930-936.
DOI 10.1109/59.871715
[19] Jeddi, B., Vahidinasab, V.:
A modified harmony search method for environmental/economic load dispatch of real-world power systems. Energy Conversion Management 78 (2014), 661-675.
DOI 10.1016/j.enconman.2013.11.027
[21] Kennedy, J., Eberhart, R.:
Particle swarm optimization. In: Proc. ICNN'95 - International Conference on Neural Networks, Perth 1995, 4, pp. 1942-1948.
DOI 10.1109/icnn.1995.488968
[22] Lee, K. Y., Park, Y. M., Ortiz, J. L.:
Fuel-cost minimisation for both real-and reactive-power dispatches. IEE Proceedings. Part C: Generation, Transmission and Distribution. 131 (1984), 85-93.
DOI 10.1049/ip-c.1984.0012
[23] Li, M., Hou, J., Niu, Y., al., et:
Economic dispatch of wind-thermal power system by using aggregated output characteristics of virtual power plants. In: International Conference on Control and Automation, IEEE 2016, pp. 830-835.
DOI 10.1109/icca.2016.7505381
[24] Liang, H., Liu, Y., Shen, Y., al., et:
A hybrid bat algorithm for economic dispatch with random wind power. IEEE Trans. Power Syst. 33 (2018), 5052-5061.
DOI 10.1109/tpwrs.2018.2812711
[25] Liu, X., Xu, W.:
Minimum emission dispatch constrained by stochastic wind power availability and cost. IEEE Trans. Power Systems 25 (2010), 1705-1713.
DOI 10.1109/tpwrs.2010.2042085
[26] al., I. Mazhoud et:
Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism. Engrg. Appl. Artif. Intell. 26 (2013), 1263-1273.
DOI 10.1016/j.engappai.2013.02.002
[27] Nwulu, N. I., Fahrioglu, M.:
A neural network model for optimal demand management contract design. In: International Conference on Environment and Electrical Engineering, IEEE 2011, pp. 1-4.
DOI 10.1109/eeeic.2011.5874776
[28] Nwulu, N. I., Fahrioglu, M.: Power system demand management contract design: A comparison between game theory and artificial neural networks. Int. Rev. Modell. Simul. 4 (2011), 104-112.
[29] Nwulu, N. I., Xia, X.:
Optimal dispatch for a microgrid incorporating renewables and demand response. Renewable Energy 101 (2017), 16-28.
DOI 10.1016/j.renene.2016.08.026
[30] Park, J. B., Lee, K. S., Shin, J. R., al., et:
A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Trans. Power Syst. 20 (2005), 34-42.
DOI 10.1109/tpwrs.2004.831275
[32] Sen, T., Mathur, H. D.:
A new approach to solve Economic Dispatch problem using a Hybrid ACO/ABC/HS optimization algorithm. Int. J. Electr. Power Energy Systems 78 (2016), 735-744.
DOI 10.1016/j.ijepes.2015.11.121
[33] Walters, D. C., Sheble, G. B.:
Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans. Power Systems 8 (1993), 1325-1332.
DOI 10.1109/59.260861
[34] Wood, A. J., Wollenberg, B. F.:
Power generation operation and control. Second edition. Fuel Energy Abstracts 37 (1996), 195.
DOI 10.1016/0140-6701(96)88715-7
[36] Yang, X. S., Deb, S.:
Engineering optimisation by cuckoo search. Int. J. Math. Modell. Numer. Optim. 1 (2010), 330-343.
DOI 10.1504/ijmmno.2010.035430
[38] Yang, H., Yi, J., Zhao, J., al., et:
Extreme learning machine based genetic algorithm and its application in power system economic dispatch. Neurocomputing 102 (2013), 154-162.
DOI 10.1016/j.neucom.2011.12.054
[39] Yao, F., Dong, Z. Y., Meng, K., al., et:
Quantum-inspired particle swarm optimization for power system operations considering wind power uncertainty and carbon tax in Australia. IEEE Trans. Industr. Inform. 8 (2012), 880-888.
DOI 10.1109/tii.2012.2210431