[1] Alpago, D., Zorzi, M., Ferrante, A.:
Identification of sparse reciprocal graphical models. IEEE Control Systems Lett. 2 (2018), 4, 659-664.
DOI 10.1109/lcsys.2018.2845943
[3] Baggio, G.:
Further results on the convergence of the Pavon-Ferrante algorithm for spectral estimation. IEEE Trans. Automat- Control 63 (2018), 10, 3510-3515.
DOI 10.1109/tac.2018.2794407 |
MR 3866257
[4] Banerjee, O., Ghaoui, L. El, d'Aspremont, A.:
Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Machine Learning Res. 9 (2008), 485-516.
MR 2417243
[6] Byrnes, C., Gusev, S., Lindquist, A.:
A convex optimization approach to the rational covariance extension problem. SIAM J. Optim. 37 (1998), 211-229.
DOI 10.1137/s0363012997321553 |
MR 1642019
[7] Byrnes, C. I., Georgiou, T. T., Lindquist, A.:
A new approach to spectral estimation: A tunable high-resolution spectral estimator. IEEE Trans. Signal Process. 48 (2000), 3189-3205.
DOI 10.1109/78.875475 |
MR 1791083
[10] Chandrasekaran, V., Parrilo, P., Willsky, A.:
Latent variable graphical model selection via convex optimization. Ann. Statist. 40 (2010), 1935-2013.
DOI 10.1214/12-aos1020 |
MR 3059067
[13] d'Aspremont, A., Banerjee, O., Ghaoui, L. El:
First-order methods for sparse covariance selection. SIAM J. Matrix Analysis Appl. 30 (2008), 56-66.
DOI 10.1137/060670985 |
MR 2399568
[16] Ferrante, A., Pavon, M., Ramponi, F.:
Hellinger versus Kullback-Leibler multivariable spectrum approximation. IEEE Trans. Autom. Control 53 (2008), 954-967.
DOI 10.1109/tac.2008.920238 |
MR 2419442
[17] Friedman, J., Hastie, T., Tibshirani, R.:
Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 (2008), 432-441.
DOI 10.1093/biostatistics/kxm045
[18] Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. 2014.
[19] Gu, S., Betzel, R., Mattar, M., Cieslak, M., Delio, P., Grafton, S., Pasqualetti, F., Bassett, D.:
Optimal trajectories of brain state transitions. NeuroImage 148 (2017), 305-317.
DOI 10.1016/j.neuroimage.2017.01.003
[20] Huang, J., Liu, N., Pourahmadi, M., Liu, L.:
Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93 (2006), 85-98.
DOI 10.1093/biomet/93.1.85 |
MR 2277742
[21] Huotari, N., Raitamaa, L., Helakari, H., Kananen, J., Raatikainen, V., Rasila, A., Tuovinen, T., Kantola, J., Borchardt, V., Kiviniemi, V., Korhonen, V.:
Sampling rate effects on resting state fMRI metrics. Frontiers Neurosci. 13 (2019), 279.
DOI 10.3389/fnins.2019.00279
[22] Jalali, A., Sanghavi, S.: Learning the dependence graph of time series with latent factors. In: International Conference on Machine Learning Edinburgh 2012.
[23] Koller, D., Friedman, N.:
Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.
MR 2778120
[24] Lauritzen, S.:
Graphical Models. Oxford University Press, Oxford 1996.
MR 1419991
[27] Ringh, A., Karlsson, J., Lindquist, A.:
Multidimensional rational covariance extension with approximate covariance matching. SIAM J. Control Optim. 56 (2018), 2, 913-944.
DOI 10.1137/17m1127922 |
MR 3775123
[28] Songsiri, J., Dahl, J., Vandenberghe, L.:
Graphical models of autoregressive processes. In: Convex Optimization in Signal Processing and Communications (D. Palomar and Y. Eldar, eds.), Cambridge Univ. Press, Cambridge 2010, pp. 1-29.
MR 2767565
[29] Songsiri, J., Vandenberghe, L.:
Topology selection in graphical models of autoregressive processes. J. Machine Learning Res. 11 (2010), 2671-2705.
MR 2738780
[30] Yue, Z., Thunberg, J., Ljung, L., Gonçalves, J.: Identification of sparse continuous-time linear systems with low sampling rate: Exploring matrix logarithms. arXiv preprint arXiv:1605.08590, 2016.
[31] {Zhu}, B., {Baggio}, G.:
On the existence of a solution to a spectral estimation problem a la Byrnes-Georgiou-Lindquist. IEEE Trans. Automat. Control 64 (2019), 2, 820-825.
DOI 10.1109/tac.2018.2836984 |
MR 3912133