Previous |  Up |  Next

Article

Keywords:
Vertex algebras; cohomology
Summary:
We define sewn elliptic cohomologies for vertex algebras by sewing procedure for coboundary operators.
References:
[1] Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 494 (1993), viii+64 pp. MR 1142494 | Zbl 0789.17022
[2] Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. Pure and Appl. Math., vol. 134, Academic Press, New York, 1988. MR 0996026 | Zbl 0674.17001
[3] Fuks, D.B.: Cohomology of infinite-dimensional Lie algebras. Contemporary Soviet Mathematic, Consultunt Bureau, New York, 1986. MR 0874337 | Zbl 0667.17005
[4] Galaev, A.S.: Comparison of approaches to characteristic classes of foliations. arXiv:1709.05888.
[5] Huang, Y.-Zh.: A cohomology theory of grading-restricted vertex algebras. Comm. Math. Phys. 327 (1) (2014), 279–307. DOI 10.1007/s00220-014-1940-1 | MR 3177939
[6] Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, vol. 10, AMS, Providence, 1998. MR 1651389
[7] Yamada, A.: Precise variational formulas for abelian differentials. Kodai Math. J. 3 (1980), 114–143. DOI 10.2996/kmj/1138036124 | MR 0569537
[8] Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9 (1996), 237–302. DOI 10.1090/S0894-0347-96-00182-8 | MR 1317233 | Zbl 0854.17034
Partner of
EuDML logo