Previous |  Up |  Next

Article

Keywords:
homeomorphism group; uniformly perfect; continuously perfect; bounded; locally trivial bundle
Summary:
Groups of homeomorphisms related to locally trivial bundles are studied. It is shown that these groups are perfect. Moreover if the homeomorphism isotopy group of the base is bounded then the bundle homeomorphism group of the total space is uniformly perfect.
References:
[1] Anderson, R.D.: On homeomorphisms as products of a given homeomorphism and its inverse. Topology of 3-manifolds (M. Fort ed., ed.), Prentice-Hall, 1961, pp. 231–237. MR 0139684
[2] Burago, D., Ivanov, S., Polterovich, L.: Conjugation invariant norms on groups of geometric origin. Adv. Stud. Pure Math. 52 (2008), 221–250, Groups of diffeomorphisms. DOI 10.2969/aspm/05210221 | MR 2509711
[3] Edwards, R.D., Kirby, R.C.: Deformations of spaces of imbeddings. Ann. Math. (2) 93 (1971), 63–88. DOI 10.2307/1970753 | MR 0283802
[4] Epstein, D.B.A.: The simplicity of certain groups of homeomorphisms. Compositio Math. 22 (2) (1970), 165–173. MR 0267589
[5] Fisher, G.M.: On the group of all homeomorphisms of a manifold. Trans. Amer. Math. Soc. 97 (1960), 193–212. DOI 10.1090/S0002-9947-1960-0117712-9 | MR 0117712
[6] Fukui, K., Imanishi, H.: On commutators of foliation preserving homeomorphisms. J. Math. Soc. Japan 51 (1) (1999), 227–236. DOI 10.2969/jmsj/05110227 | MR 1661044
[7] Kowalik, A., Rybicki, T.: On the homeomorphism groups on manifolds and their universal coverings. Cent. Eur. J. Math. 9 (2011), 1217–1231. DOI 10.2478/s11533-011-0081-4 | MR 2836715
[8] Lech, J., Michalik, I., Rybicki, T.: On the boundedness of equivariant homeomorphism groups. Opuscula Math. 38 (2018), 395–408. DOI 10.7494/OpMath.2018.38.3.395 | MR 3781620
[9] Ling, W.: Factorizable groups of homeomorphisms. Compositio Math. 51 (1) (1984), 41–51. MR 0734783
[10] Mather, J.N.: The vanishing of the homology of certain groups of homeomorphisms. Topology 10 (1971), 297–298. DOI 10.1016/0040-9383(71)90022-X | MR 0288777
[11] McDuff, D.: The lattice of normal subgroups of the group of diffeomorphisms or homeomorphisms of an open manifold. J. London Math. Soc. (2) 18 (1978), 353–364. DOI 10.1112/jlms/s2-18.2.353 | MR 0509952
[12] Michalik, I., Rybicki, T.: On the structure of the commutator subgroup of certain homeomorphism groups. Topology Appl. 158 (2011), 1314–1324. MR 2806364
[13] Munkres, J.: Elementary differential topology. Ann. Math. Studies, vol. 54, Princeton University Press, 1966. MR 0198479
[14] Rybicki, T.: On commutators of equivariant homeomorphisms. Topology Appl. 154 (2007), 1561–1564. DOI 10.1016/j.topol.2006.12.003 | MR 2317062
[15] Rybicki, T.: Boundedness of certain automorphism groups of an open manifold. Geom. Dedicata 151 (1) (2011), 175–186. DOI 10.1007/s10711-010-9525-4 | MR 2780744
[16] Rybicki, T.: Locally continuously perfect groups of homeomorphisms. Ann. Global Anal. Geom. 40 (2011), 191–202. DOI 10.1007/s10455-011-9253-5 | MR 2811625
[17] Siebenmann, L.C.: Deformation of homeomorphisms on stratified sets, 1, 2. 2, Comment. Math. Helv. 47 (1972), 123–163. DOI 10.1007/BF02566793 | MR 0319207
Partner of
EuDML logo