Previous |  Up |  Next

Article

Keywords:
Lyapunov stability; control; robot-manipulator; regulation
Summary:
This paper deals with the global position control problem of robot manipulators in joint space, a new family of control schemes consisting of a suitable combination of hyperbolic functions is presented. The proposed control family includes a large class of bounded hyperbolic-type control schemes to drive both position error and derivative action terms plus gravity compensation. To ensure global asymptotic stability of closed-loop system equilibrium point, we propose an energy-shaping based strict Lyapunov function. To verify the efficiency of the proposed control algorithm, an experimental comparative analysis between the well known unbounded linear PD control and three hyperbolic-type control schemes of the proposed family on a three degrees of freedom direct-drive robot manipulator is analysed.
References:
[1] Zavala, E. Aguiñaga. A., Santibañez, V., Reyes, F.: Global trajectory tracking through static feedback for robot manipulators with bounded inputs. IEEE Trans. Control Systems Technol. 17 (2009), 4, 934-944. DOI 10.1109/tcst.2009.2013938 | MR 2830143
[2] Caverly, R. J., Zlotink, D. E., Bridgeman, L. J., Fobres, J. R.: Saturated proportional derivative control of a single-link flexible-joint manipulator. Robotics computer-Integrated Manufact. 30 (2014), 658-666. DOI 10.1016/j.rcim.2014.06.001
[3] Caverly, R. J., Zlotink, D. E., Forbes, J. R.: Saturated control of flexible-joint manipulators using a Hammerstein strictly positive real compensator. Robotica 34 (2014), 1367-1382. DOI 10.1017/s0263574714002343
[4] Chavez-Olivares, C., Reyes-Cortes, F., Gonzalez-Galvan, E., Mendoza-Gutierrez, M., Bonilla-Gutierrez, I.: Experimental evaluation of parameter identification on an anthropomorphic direct drive robot. Int. J. Advanced Robotic Systems 9 (2012), 4, 1-18. DOI 10.5772/52190
[5] Craig, J., Hsu, P., Sastry, S.: Adaptive control of mechanical manipulators. Int. J. Robotics Research 6 (1987), 2, 16-28. DOI 10.1177/027836498700600202
[6] Petre, A. del: Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators. IEEE Robotics Automat. Lett. 3 (2018), 1, 281-288. DOI 10.1109/lra.2017.2738321
[7] Fischer, N., Dani, A., Sharma, N., Dixon, W.: Saturated control of an uncertain nonlinear system with input delay. Automatica 49 (2013), 1741-1747. DOI 10.1016/j.automatica.2013.02.013 | MR 3049222
[8] Fischer, N., Kan, Z., Kamalapurkar, R., Dixon, W.: Saturated RISE feedback control for a class of second-order nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 4, 1094-1099. DOI 10.1109/tac.2013.2286913 | MR 3199364
[9] Izadbakhsh, A., Kheirkhahan, P.: Nonlinear PID control of electrical flexible joint robots-Theory and experimental verification. In: 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon 2018, pp. 250-255. DOI 10.1109/icit.2018.8352185 | MR 3511400
[10] Izadbakhsh, A., Fateh, M. M.: Real-time robust adaptive control of robots subjected to actuator voltage constraint. Nonlinear Dynamics, Springer 78 (2014) 3, 1999-2014. DOI 10.1007/s11071-014-1574-z
[11] Izadbakhsh, A., Kheirkhahan, P.: On the voltage-based control of robot manipulators revisited. Int. J. Control, Automat. Systems 16 (2018), 4, 1887-1894. DOI 10.1007/s12555-017-0035-0
[12] Kelly, R., Santibañez, V.: Global regulation of elastic joint robots based on energy shaping. IEEE Trans. Automat. Control 43 (1998), 10, 1451-1456. DOI 10.1109/9.720506 | MR 1646672
[13] Kelly, R., Santibañez, V., Loria, A.: Control of Robot Manipukators in Joint Space. Springer, 2005. DOI 10.1002/rnc.1114 | MR 1997825
[14] Lopez, D., Loria, A., Zavala, A.: Adaptive tracking control of Euler-Lagrange systems with bounded controls. Int. J. Adaptive Control Signal Process. 31 (2017), 299-313. DOI 10.1002/acs.2697 | MR 3623539
[15] Mendoza, M., Bonilla, I., Reyes, F., Gonzalez-Galvan, E.: A Lyapunov-based design tool of impedance controllers for robot manipulators. Kybernetika 48 (2012), 6, 1136-1155. MR 3052878
[16] Mendoza, M., Zavala-Rao, A., Santibanez, V., Reyes, F.: Output-feedback proportional-integral-derivative-type control with simple tuning fot the global regulation of robot manipulators with input constraints. IET Control Theory Appl. Inst. Engrg. Technol. 10000 (2015), 1-10. DOI 10.1049/iet-cta.2014.0680 | MR 3410788
[17] Moreno, J., Santibañez, V.: Robust saturated pi joint velocity control for robot manipulators. Asian J. Control 15 (2013), 1, 64-79. DOI 10.1002/asjc.586 | MR 3015759
[18] Orrante, J., Santibañez, V., Hernandez, M.: A new tuning procedure for nonlinear PID global regulators with bounded| torques for rigid robots. Robotica 33 (2015), 4, 1926-1947. DOI 10.1017/s0263574714001131
[19] Ramirez, J. A., Santibañez, V., Campa, R.: Stability of robot manipulators under saturated PID compensation. IEEE Trans. Control Systems Technol. 16 (2008), 6, 1333-1341. DOI 10.1109/tcst.2008.917875
[20] Reyes, F., Cid, J., Limon, M. A., Cervantes, M.: Square root-type control for robot manipulators. Int. J. Advanced Robotic Systems 10 (2013), 39, 1-7. DOI 10.5772/52500
[21] Rodriguez, M. C., Bonilla, I., Mendoza, M., Chavez, C.: Saturating stiffness control of robot manipulators with bounded inputs. Int. J. Appl. Math. Computer Sci. 27 (2017), 1, 79-90. DOI 10.1515/amcs-2017-0006 | MR 3676816
[22] Romero, J. G., Ortega, R., Donaire, A.: Robust energy shaping control of mechanical systems. Systems Control Lett. 62 (2016), 770-780. DOI 10.1016/j.sysconle.2013.05.011 | MR 3080470
[23] Santibañez, V., Kelly, R., Reyes, F.: A new set-point controller with bounded torques for robot manipulators. IEEE Trans. Industr. Electron. 45 (1998), 1, 126-133. DOI 10.1109/41.661313
[24] Santibañez, V., Kelly, R., Llama, M. A.: A novel global asymptotic stable set-point fuzzy controller with bounded torques for robot manipulators. IEEE Trans. Fuzzy Systems 13 (2005), 3, 362-372. DOI 10.1109/tfuzz.2004.841735
[25] Shojaei, K., Chatraei, A.: A saturating extension of an output feedback controller for internally damped Euler-Lagrange systems. Asian J. Control 17 (2015), 6, 2175-2187. DOI 10.1002/asjc.1115 | MR 3418383
[26] Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer Publishing Company, Incorporated, 2010.
[27] Siciliano, B., Kathib, O.: Handbook of Robotics. Second Edition. Springer, 2016. DOI 10.1007/978-3-319-32552-1\_1
[28] Spong, M. W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. John Wiley and Sons, Inc., 2006. DOI 10.1108/ir.2006.33.5.403.1
[29] Su, Y., Muller, P. C., Zheng, C.: Global asymptotic saturated PID Control for robot manipulators. IEEE Trans. Control Systems Technol. 18 (2010), 6, 1280-1288. DOI 10.1109/tcst.2009.2035924
[30] Sun, D., Hu, S., Shao, X., Liu, C.: Global stability of a saturated nonlinear PID controller for robot manipulators. IEEE Trans. Control Systems Technol. 17 (2009), 4, 892-899. DOI 10.1109/tcst.2008.2011748 | MR 1214267
[31] Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst. Meas. Control 103 (1981), 119-125. DOI 10.1115/1.3139651 | Zbl 0473.93012
[32] Yarza, A., Santibañez, V., Moreno, J.: Global asymptotic stability of the classical PID controller by considering saturation effects in industrial robots. Int. J. Advanced Robotic Systems 8 (2011), 4, 34-42. DOI 10.5772/45688
[33] Zavala, A., Mendoza, M., Santibañez, V., Reyes, F.: Output-feedback proportional-integral-derivative-type control with multiple saturating structure for the global stabilization of robot manipulators with bounded inputs. Int. J. Advanced Robotic Systems 6 (2016), 1-12. DOI 10.1177/1729881416663368 | MR 3410788
[34] Zelei, A., Bencsik, L., Stepan, G.: Handling Actuator Saturation As Underactuation: Case study with acroboter service robot. J. Computat. Nonlinear Dynamics 12 (2016), 3, 031011-031015. DOI 10.1115/1.4034868
Partner of
EuDML logo