[1] Zavala, E. Aguiñaga. A., Santibañez, V., Reyes, F.:
Global trajectory tracking through static feedback for robot manipulators with bounded inputs. IEEE Trans. Control Systems Technol. 17 (2009), 4, 934-944.
DOI 10.1109/tcst.2009.2013938 |
MR 2830143
[2] Caverly, R. J., Zlotink, D. E., Bridgeman, L. J., Fobres, J. R.:
Saturated proportional derivative control of a single-link flexible-joint manipulator. Robotics computer-Integrated Manufact. 30 (2014), 658-666.
DOI 10.1016/j.rcim.2014.06.001
[3] Caverly, R. J., Zlotink, D. E., Forbes, J. R.:
Saturated control of flexible-joint manipulators using a Hammerstein strictly positive real compensator. Robotica 34 (2014), 1367-1382.
DOI 10.1017/s0263574714002343
[4] Chavez-Olivares, C., Reyes-Cortes, F., Gonzalez-Galvan, E., Mendoza-Gutierrez, M., Bonilla-Gutierrez, I.:
Experimental evaluation of parameter identification on an anthropomorphic direct drive robot. Int. J. Advanced Robotic Systems 9 (2012), 4, 1-18.
DOI 10.5772/52190
[5] Craig, J., Hsu, P., Sastry, S.:
Adaptive control of mechanical manipulators. Int. J. Robotics Research 6 (1987), 2, 16-28.
DOI 10.1177/027836498700600202
[6] Petre, A. del:
Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators. IEEE Robotics Automat. Lett. 3 (2018), 1, 281-288.
DOI 10.1109/lra.2017.2738321
[8] Fischer, N., Kan, Z., Kamalapurkar, R., Dixon, W.:
Saturated RISE feedback control for a class of second-order nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 4, 1094-1099.
DOI 10.1109/tac.2013.2286913 |
MR 3199364
[9] Izadbakhsh, A., Kheirkhahan, P.:
Nonlinear PID control of electrical flexible joint robots-Theory and experimental verification. In: 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon 2018, pp. 250-255.
DOI 10.1109/icit.2018.8352185 |
MR 3511400
[10] Izadbakhsh, A., Fateh, M. M.:
Real-time robust adaptive control of robots subjected to actuator voltage constraint. Nonlinear Dynamics, Springer 78 (2014) 3, 1999-2014.
DOI 10.1007/s11071-014-1574-z
[11] Izadbakhsh, A., Kheirkhahan, P.:
On the voltage-based control of robot manipulators revisited. Int. J. Control, Automat. Systems 16 (2018), 4, 1887-1894.
DOI 10.1007/s12555-017-0035-0
[12] Kelly, R., Santibañez, V.:
Global regulation of elastic joint robots based on energy shaping. IEEE Trans. Automat. Control 43 (1998), 10, 1451-1456.
DOI 10.1109/9.720506 |
MR 1646672
[14] Lopez, D., Loria, A., Zavala, A.:
Adaptive tracking control of Euler-Lagrange systems with bounded controls. Int. J. Adaptive Control Signal Process. 31 (2017), 299-313.
DOI 10.1002/acs.2697 |
MR 3623539
[15] Mendoza, M., Bonilla, I., Reyes, F., Gonzalez-Galvan, E.:
A Lyapunov-based design tool of impedance controllers for robot manipulators. Kybernetika 48 (2012), 6, 1136-1155.
MR 3052878
[16] Mendoza, M., Zavala-Rao, A., Santibanez, V., Reyes, F.:
Output-feedback proportional-integral-derivative-type control with simple tuning fot the global regulation of robot manipulators with input constraints. IET Control Theory Appl. Inst. Engrg. Technol. 10000 (2015), 1-10.
DOI 10.1049/iet-cta.2014.0680 |
MR 3410788
[17] Moreno, J., Santibañez, V.:
Robust saturated pi joint velocity control for robot manipulators. Asian J. Control 15 (2013), 1, 64-79.
DOI 10.1002/asjc.586 |
MR 3015759
[18] Orrante, J., Santibañez, V., Hernandez, M.:
A new tuning procedure for nonlinear PID global regulators with bounded| torques for rigid robots. Robotica 33 (2015), 4, 1926-1947.
DOI 10.1017/s0263574714001131
[19] Ramirez, J. A., Santibañez, V., Campa, R.:
Stability of robot manipulators under saturated PID compensation. IEEE Trans. Control Systems Technol. 16 (2008), 6, 1333-1341.
DOI 10.1109/tcst.2008.917875
[20] Reyes, F., Cid, J., Limon, M. A., Cervantes, M.:
Square root-type control for robot manipulators. Int. J. Advanced Robotic Systems 10 (2013), 39, 1-7.
DOI 10.5772/52500
[21] Rodriguez, M. C., Bonilla, I., Mendoza, M., Chavez, C.:
Saturating stiffness control of robot manipulators with bounded inputs. Int. J. Appl. Math. Computer Sci. 27 (2017), 1, 79-90.
DOI 10.1515/amcs-2017-0006 |
MR 3676816
[23] Santibañez, V., Kelly, R., Reyes, F.:
A new set-point controller with bounded torques for robot manipulators. IEEE Trans. Industr. Electron. 45 (1998), 1, 126-133.
DOI 10.1109/41.661313
[24] Santibañez, V., Kelly, R., Llama, M. A.:
A novel global asymptotic stable set-point fuzzy controller with bounded torques for robot manipulators. IEEE Trans. Fuzzy Systems 13 (2005), 3, 362-372.
DOI 10.1109/tfuzz.2004.841735
[25] Shojaei, K., Chatraei, A.:
A saturating extension of an output feedback controller for internally damped Euler-Lagrange systems. Asian J. Control 17 (2015), 6, 2175-2187.
DOI 10.1002/asjc.1115 |
MR 3418383
[26] Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer Publishing Company, Incorporated, 2010.
[29] Su, Y., Muller, P. C., Zheng, C.:
Global asymptotic saturated PID Control for robot manipulators. IEEE Trans. Control Systems Technol. 18 (2010), 6, 1280-1288.
DOI 10.1109/tcst.2009.2035924
[30] Sun, D., Hu, S., Shao, X., Liu, C.:
Global stability of a saturated nonlinear PID controller for robot manipulators. IEEE Trans. Control Systems Technol. 17 (2009), 4, 892-899.
DOI 10.1109/tcst.2008.2011748 |
MR 1214267
[31] Takegaki, M., Arimoto, S.:
A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst. Meas. Control 103 (1981), 119-125.
DOI 10.1115/1.3139651 |
Zbl 0473.93012
[32] Yarza, A., Santibañez, V., Moreno, J.:
Global asymptotic stability of the classical PID controller by considering saturation effects in industrial robots. Int. J. Advanced Robotic Systems 8 (2011), 4, 34-42.
DOI 10.5772/45688
[33] Zavala, A., Mendoza, M., Santibañez, V., Reyes, F.:
Output-feedback proportional-integral-derivative-type control with multiple saturating structure for the global stabilization of robot manipulators with bounded inputs. Int. J. Advanced Robotic Systems 6 (2016), 1-12.
DOI 10.1177/1729881416663368 |
MR 3410788
[34] Zelei, A., Bencsik, L., Stepan, G.:
Handling Actuator Saturation As Underactuation: Case study with acroboter service robot. J. Computat. Nonlinear Dynamics 12 (2016), 3, 031011-031015.
DOI 10.1115/1.4034868