Previous |  Up |  Next

Article

Keywords:
PID control; dominant pole placement; filtering; optimization
Summary:
This paper discusses a novel approach to tuning 2DOF PID controllers for a positional control system, with a special focus on filters. It is based on the multiple real dominant pole method, applicable to both standard and series PID control. In the latter case it may be generalized by using binomial nth order filters. These offer filtering properties scalable in a much broader range than those allowed by a standard controller. It is shown that in terms of a modified total variance, controllers with higher order binomial filters allow a significant reduction of excessive control effort due to the measurement noise. When not limited by the sampling period choice, a significant performance increase may be achieved by using third order filters, which can be further boosted using higher order filters. Furthermore, all of the derived tuning procedures keep the controller design sufficiently simple so as to be attractive for industrial applications. The proposed approach is applied to the position control of electrical drives, where quantization noise can occur as a result of angular velocity reconstruction using the differentiated outputs of incremental position sensors.
References:
[1] Aström, K. J., Wittenmark, B.: Computer Controlled Systems. Theory and Design. Prentice Hall, Englewood Cliffs, N.J. 1984. MR 0127569
[2] Bodson, M., Chiasson, J., Novotnak, R. T.: Nonlinear speed observer for high-performance induction motor control. IEEE Trans. Industr. Electronics 42 (1995), 4, 337-343. DOI 10.1109/41.402471
[3] Brown, R. H., Schneider, S. C., Mulligan, M. G.: Analysis of algorithms for velocity estimation from discrete position versus time data. IEEE Trans. Industr- Electronics 39 (1992), 11-19. DOI 10.1109/41.121906
[4] Chu, E.: Optimization and pole assignment in control system design. Int. J. Appl. Math. Computer Sci. 11 (2001), 5, 1035-1053. MR 1885300
[5] Silva, L. R. da, Flesch, R. C. C., Normey-Rico, J. E.: Analysis of anti-windup techniques in PID control of processes with measurement noise. In: 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control, Ghent 2018. DOI 10.1016/j.ifacol.2018.06.100
[6] D'Andrea-Novel, B., Fliess, M., Join, C., Mounier, H., Steux, B.: A mathematical explanation via “intelligent“ PID controllers of the strange ubiquity of PIDs. In: Proc. 18th Mediterranean Conference on Control and Automation, MED'10, 2010, pp. 395-400. DOI 10.1109/med.2010.5547700
[7] Fišer, J., Zítek, P., Vyhlídal, T.: Dominant four-pole placement in filtered PID control loop with delay. 20th IFAC World Congress, IFAC-PapersOnLine 50 (2017), 1, 6501-6506. DOI 10.1016/j.ifacol.2017.08.1047 | MR 3938074
[8] Fliess, M., Join, C.: Model-free control. Int. J. Control 86 (2013), 12, 2228-2252. DOI 10.1080/00207179.2013.810345 | MR 3172473
[9] Fliess, M., Join, C.: Stability margins and model-free control: A first look. In: 2014 European Control Conference (ECC), 2014, pp. 454-459. DOI 10.1109/ecc.2014.6862167 | MR 3356061
[10] Gao, Z.: Active disturbance rejection control: a paradigm shift in feedback control system design. In: American Control Conference, 2006, pp. 2399-2405. DOI 10.1109/acc.2006.1656579
[11] Gao, Z.: On the centrality of disturbance rejection in automatic control. ISA Trans. 53 (2014), 10, 850-857. DOI 10.1016/j.isatra.2013.09.012
[12] Han, J.: From PID to Active Disturbance Rejection Control. IEEE Trans. Industr. Electron. 56 (2009), 3, 900-906. DOI 10.1109/tie.2008.2011621
[13] Huba, M.: Open flexible PD-controller design for different filtering properties. In: 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), IEEE, Vienna 2013. DOI 10.1109/iecon.2013.6699719
[14] Huba, M.: Tuning of a Filtered Pole Assignment Controller for an Integral Plant. In: 15th Int. Carpathian Control Conference - ICCC, Velké Karlovice 2014. DOI 10.1109/carpathiancc.2014.6843593
[15] Huba, M.: Filter choice for an effective measurement noise attenuation in PI and PID controllers. In: ICM 2015, Nagoya, 2015. DOI 10.1109/icmech.2015.7083946
[16] Huba, M.: Pole Assignment PD Controller Tuning for Oscillatory Systems with Dead Time. In: International Conference on Innovative Technologies, IN-TECH 2015, Dubrovnik 2015.
[17] Huba, M., Bélai, I.: Limits of a Simplified Controller Design Based on IPDT models. ProcIMechE Part I: J. Systems Control Engrg. 232 (2018), 6, 728-741. DOI 10.1177/0959651818755957
[18] Huba, M., P.Bisták, Z.Skachová, Žáková, K.: P- and PD-controllers for I$_1$ and I$_2$ models with dead time. In: 6th IEEE Mediterranean Conference on Control and Automation 11 (1998), 514-519. DOI 10.1142/9789814447317_0085
[19] Huba, M., P.Bisták, Z.Skachová, Žáková, K.: Predictive antiwindup PI and PID-controllers based on I$_1$ and I$_2$ models with dead time. 6th IEEE Mediterranean Conf. 11 (1998), 532-535. DOI 10.1142/9789814447317_0088
[20] Lee, J., Eun, Y.: Analysis of noise-induced tracking loss in pi controlled systems with anti-windup. In: 2016 American Control Conference (ACC) 2016, pp. 5461-5466. DOI 10.1109/acc.2016.7526526
[21] Mercader, P., Banos, A.: A PI tuning rule for integrating plus dead time processes with parametric uncertainty. ISA Transactions 67 (2017), 246-255. DOI 10.1016/j.isatra.2017.01.025
[22] Micic, A. D., Matausek, M. R.: Optimization of PID controller with higher-order noise filter. J. Process Control 24 (2014), 5, 694-700. DOI 10.1016/j.jprocont.2013.10.009
[23] Oldenbourg, R. C., Sartorius, H.: Dynamik selbsttätiger Regelungen. Second edition 1951. R. Oldenbourg-Verlag, München 1944. Engl. Ed.: The dynamics of automatic controls, American Society of Mechanical Engineers, 1948. DOI 10.1002/zamm.19520320221
[24] Rissanen, J.: Control system synthesis by analogue computer based on generalized linear feedback concept. In: Proc. Symposium on Analog Computation Applied to the Study of Chemical Processes 1960, pp. 1-13.
[25] Segovia, V. R., Hägglund, T., Aström, K. J.: Measurement noise filtering for PID controllers. J. Process Control 24 (2014), 4, 299-313. DOI 10.1016/j.jprocont.2014.01.017
[26] Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. J. Process Control 13 (2003), 291-309. DOI 10.1016/s0959-1524(02)00062-8 | MR 2091674
[27] Vítečková, M., Víteček, A.: 2DOF PI and PID controllers tuning. In: 9th IFAC Workshop on Time Delay Systems, volume 9, Praha 2010, pp. 343-348. DOI 10.3182/20100607-3-cz-4010.00061
[28] Vítečková, M., Víteček, A.: 2DOF PID controller tuning for integrating plants. In: 2016 17th Int. Carpathian Control Conf. (ICCC) 2016, pp. 793-797. DOI 10.1109/carpathiancc.2016.7501204
[29] Yang, Sheng-Ming, Ke, Shuenn-Jenn: Performance evaluation of a velocity observer for accurate velocity estimation of servo motor drives. In: Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), volume 3 (1998), pp. 1697-1702. DOI 10.1109/28.821803
[30] Zítek, P., Fišer, J., Vyhlídal, T.: Dimensional analysis approach to dominant three-pole placement in delayed PID control loops. J. Process Control 23 (2013), 8, 1063-1074. DOI 10.1016/j.jprocont.2013.06.001 | MR 3938074
[31] Zítek, P., Fišer, J., Vyhlídal, T.: Dynamic similarity approach to control system design: delayed PID control loop. Int. J. Control 92 (2017), 2, 329-338. DOI 10.1080/00207179.2017.1354398 | MR 3938074
Partner of
EuDML logo