Article
Keywords:
copula; noise; perturbation of copula; random vector
Summary:
For a random vector $(X,Y)$ characterized by a copula $C_{X,Y}$ we study its perturbation $C_{X+Z,Y}$ characterizing the random vector $(X+Z,Y)$ affected by a noise $Z$ independent of both $X$ and $Y$. Several examples are added, including a new comprehensive parametric copula family $\left(\mathcal{C}_k \right) _{k \in [-\infty, \infty]}$.
References:
[6] Sklar, A.:
Fonctions de répartition a n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris \mi{8} (1959), 229-231.
MR 0125600
[8] Williamson, R. C., Downs, R. C.:
Probabilistic arithmetic I: numerical methods for calculating convolutions and dependency bounds. Int. J. Approx. Reason. 4 (2014), 89-158.
DOI 10.1016/0888-613x(90)90022-t |
MR 1042207