[1] Aguilar-Avelar, C., Moreno-Valenzuela, J.:
New feedback linearization-based control for arm trajectory tracking of the furuta pendulum. IEEE/ASME Trans. Mechatron. 21 (2016), 2, 638-648.
DOI 10.1109/tmech.2015.2485942
[2] Angeli, D.:
Almost global stabilization of the inverted pendulum via continuous state feedback. Automatica 37 (2001), 7, 1103-1108.
DOI 10.1016/s0005-1098(01)00064-4
[3] Aracil, J., Acosta, J. A., Gordillo, F.:
A nonlinear hybrid controller for swinging-up and stabilizing the furuta pendulum. Control Engrg. Practice 21 (2013), 8, 989-993.
DOI 10.1016/j.conengprac.2013.04.001
[5] Azar, A. T., Serrano, F. E.:
Adaptive Sliding Mode Control of the Furuta Pendulum. Springer International Publishing, Cham 2015, pp. 1-42.
DOI 10.1007/978-3-319-11173-5_1
[6] Bhat, S. P., Bernstein, D. S.:
A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Systems Control Lett. 39 (2000), 1, 63-70.
DOI 10.1016/s0167-6911(99)00090-0 |
MR 1828234
[7] Bloch, A. M., Leonard, N. E., Marsden, J. E.:
Stabilization of the pendulum on a rotor arm by the method of controlled lagrangians. In: Proc. IEEE International Conference on Robotics and Automation 1999, Vol. 1, IEEE 1999, pp. 500-505.
DOI 10.1109/robot.1999.770026
[8] Dorf, R. C., Bishop, R. H.: Modern Control Systems. Pearson, 2011.
[11] Graichen, K., Treuer, M., Zeitz, M.:
Swing-up of the double pendulum on a cart by feedforward and feedback control with experimental validation. Automatica 43 (2007), 1, 63-71.
DOI 10.1016/j.automatica.2006.07.023 |
MR 2266770
[12] Hera, P. X. La, Freidovich, L. B., Shiriaev, A. S., Mettin, U.:
New approach for swinging up the furuta pendulum: Theory and experiments. Mechatronics 19 (2009), 8, 1240-1250.
DOI 10.1016/j.mechatronics.2009.07.005
[13] Horibe, T., Sakamoto, N.:
Optimal swing up and stabilization control for inverted pendulum via stable manifold method. IEEE Trans. Control Systems Technol. 26 (2918), 2, 708-715.
DOI 10.1109/tcst.2017.2670524
[14] Inc., Quanser Consulting: Qube servo, 2015. accessed: 2015-06-30.
[16] Lambregts, A. A.:
Integrated system design for flight and propulsion control using total energy principles. In: American Institute of Aeronautics and Astronautics, Aircraft Design, Systems and Technology Meeting, Fort Worth 17 (1983).
DOI 10.2514/6.1983-2561
[17] Lambregts, A. A.:
Vertical flight path and speed control autopilot design using total energy principles. AIAA 83-2239 (1983).
DOI 10.2514/6.1983-2561
[19] Lee, T., Leok, M., McClamroch, H.: Geometric formulations of furuta pendulum control problems. Math. Engrg., Science and Aerospace (MESA) 7 (2016), 1.
[21] Mazenc, F., Praly, L.:
Adding integrations, saturated controls, and stabilization for feedforward systems. IEEE Trans. Automat. Control 41 (1996), 11, 1559-1578.
DOI 10.1109/9.543995 |
MR 1419682
[22] Olfati-Saber, R.:
Fixed point controllers and stabilization of the cart-pole system and the rotating pendulum. In: Proc. 38th IEEE Conference on Decision and Control 1999, Vol. 2, pp. 1174-1181.
DOI 10.1109/cdc.1999.830086
[23] Olfati-Saber, R.:
Normal forms for underactuated mechanical systems with symmetry. IEEE Trans. Automat. Control 47 (2002), 2, 305-308.
DOI 10.1109/9.983365 |
MR 1881898
[24] Ortega, T., Villafuerte, R., Vázquez, C., Freidovich, L.:
Performance without tweaking differentiators via a pr controller: Furuta pendulum case study. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3777-3782.
DOI 10.1109/icra.2016.7487566 |
MR 3740193
[25] Prasad, L. B., Tyagi, B., Gupta, H. O.:
Optimal control of nonlinear inverted pendulum system using pid controller and lqr: Performance analysis without and with disturbance input. Int. J. Automat. Computing 11 (2014), 6, 661-670.
DOI 10.1007/s11633-014-0818-1
[26] Seman, P., Rohal-Ilkiv, B., Salaj, M., al., et:
Swinging up the furuta pendulum and its stabilization via model predictive control. J. Electr. Engrg. 64 (2013), 3, 152-158.
DOI 10.2478/jee-2013-0022
[27] Shiriaev, A. S., Freidovich, L. B., Robertsson, A., Johansson, R., Sandberg, A.:
Virtual-holonomic-constraints-based design of stable oscillations of furuta pendulum: Theory and experiments. IEEE Trans. Robotics 23 (2007), 4, 827-832.
DOI 10.1109/tro.2007.900597 |
MR 2527076
[28] Schaft, A. van der:
Port-hamiltonian systems: an introductory survey. In: Proc. International Congress of Mathematicians (M. Sanz-Sole, J. Soria, J.L. Varona, and J. Verdera, eds.), Vol. III: Invited Lectures, Mathematical Society Publishing House, pp. 1339-1365, Madrid 2006.
DOI 10.4171/022-3/65 |
MR 2275732
[29] Vásquez-Beltrán, M. A., Rodríguez-Cortés, H.:
A total energy control system strategy for the quadrotor helicopter. In: International Conference on Unmanned Aircraft Systems 2015.
DOI 10.1109/icuas.2015.7152302