Previous |  Up |  Next

Article

Keywords:
nonexistence; test functions; global weak solution; fractional Laplacian; critical exponent
Summary:
In the present paper, we prove nonexistence results for the following nonlinear evolution equation, see works of T. Cazenave and A. Haraux (1990) and S. Zheng (2004), $$ u_{tt} +f(x)u_t +(-\Delta)^{\alpha/2}(u^m)= h(t,x) |u|^{p}, $$ posed in $(0,T)\times \mathbb{R}^{N},$ where $(-\Delta)^{{\alpha}/{2}}, 0<\alpha \leq 2$ is ${\alpha}/{2}$-fractional power of $\,-\Delta.$ Our method of proof is based on suitable choices of the test functions in the weak formulation of the sought solutions. Then, we extend this result to the case of a $2\times2$ system of the same type.
References:
[1] Cazenave T., Haraux A.: Introduction aux problèmes d'évolution semi-linéaires. Mathématiques & Applications, 1. Ellipses, Paris, 1990 (French). MR 1299976
[2] Fino A. Z., Ibrahim H., Wehbe A.: A blow-up result for a nonlinear damped wave equation in exterior domain: the critical case. Comput. Math. Appl. 73 (2017), no. 11, 2415–2420. DOI 10.1016/j.camwa.2017.03.030 | MR 3648022
[3] Fujita H.: On the blowing up of solutions of the problem for $ u_t=\Delta u + u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124. MR 0214914
[4] Guedda M., Kirane M.: A note on nonexistence of global solutions to a nonlinear integral equation. Bull. Belg. Math. Soc. Simon Stevin 6 (1999), no. 4, 491–497. DOI 10.36045/bbms/1103055577 | MR 1732885
[5] Guedda M., Kirane M.: Local and global nonexistence of solutions to semilinear evolution equations. Proc. of the 2002 Fez Conf. on Partial Differential Equations, Electron. J. Differ. Equ. Conf. 09 (2002), 149–160. MR 1976692
[6] Hakem A.: Nonexistence of weak solutions for evolution problems on $\mathbb{R}^{N}$. Bull. Belg. Math. Soc. Simon Stevin 12 (2005), no. 1, 73–82. DOI 10.36045/bbms/1113318131 | MR 2134858
[7] Hakem A., Berbiche M.: On the blow-up behavior of solutions to semi-linear wave models with fractional damping. IAENG Int. J. Appl. Math. 41 (2011), no. 3, 206–212. MR 2954229
[8] Ju N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Comm. Math. Phys. 255 (2005), 161–181. DOI 10.1007/s00220-004-1256-7 | MR 2123380
[9] Ogawa T., Takeda H.: Non-existence of weak solutions to nonlinear damped wave equations in exterior domains. Nonlinear Anal. 70 (2009), no. 10, 3696–3701. DOI 10.1016/j.na.2008.07.025 | MR 2504456
[10] Pozrikidis C.: The Fractional Laplacian. CRC Press, Boca Raton, 2016. MR 3470013
[11] Sun F., Wang M.: Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping. Nonlinear Anal. 66 (2007), no. 12, 2889–2910. DOI 10.1016/j.na.2006.04.012 | MR 2311644
[12] Takeda H.: Global existence and nonexistence of solutions for a system of nonlinear damped wave equations. J. Math. Anal. Appl. 360 (2009), no. 2, 631–650. DOI 10.1016/j.jmaa.2009.06.072 | MR 2561260
[13] Todorova G., Yordanov B.: Critical exponent for a nonlinear wave equation with damping. C. R. Acad. Sci. Paris Sèrie I Math. 330 (2000), no. 7, 557–562. DOI 10.1016/S0764-4442(00)00228-7 | MR 1760438
[14] Zhang Q. S.: A blow up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci. Paris Sèrie I Math. 333 (2001), no. 2, 109–114. DOI 10.1016/S0764-4442(01)01999-1 | MR 1847355
[15] Zheng S.: Nonlinear Evolution Equations. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 113, Chapman & Hall/CRC Press, Boca Raton, 2004. MR 2088362
Partner of
EuDML logo