Previous |  Up |  Next

Article

Keywords:
uniform ultrafilter; axiom of choice; measurable cardinal; strongly compact cardinal
Summary:
We study some limitations and possible occurrences of uniform ultrafilters on ordinals without the axiom of choice. We prove an Easton-like theorem about the possible spectrum of successors of regular cardinals which carry uniform ultrafilters; we also show that this spectrum is not necessarily closed.
References:
[1] Apter A. W., Dimitriou I. M., Koepke P.: The first measurable cardinal can be the first uncountable regular cardinal at any successor height. MLQ Math. Log. Q. 60 (2014), no. 6, 471–486. DOI 10.1002/malq.201110007 | MR 3274975
[2] Blass A.: A model without ultrafilters. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 4, 329–331. MR 0476510
[3] Feferman S.: Some applications of the notions of forcing and generic sets. Fund. Math. 56 (1964/1965), 325–345. DOI 10.4064/fm-56-3-325-345 | MR 0176925
[4] Herrlich H., Howard P., Keremedis K.: On preimages of ultrafilters in $\mathsf{ZF}$. Comment. Math. Univ. Carolin. 57 (2016), no. 2, 241–252. MR 3513447
[5] Jech T.: Set Theory. Springer Monographs in Mathematics, Springer, Berlin, 2003. MR 1940513 | Zbl 1007.03002
[6] Karagila A.: Embedding orders into the cardinals with $\mathsf{DC}_\kappa$. Fund. Math. 226 (2014), no. 2, 143–156. DOI 10.4064/fm226-2-4 | MR 3224118
[7] Solovay R. M.: A model of set-theory in which every set of reals is Lebesgue measurable. Ann. of Math. (2) 92 (1970), 1–56. DOI 10.2307/1970696 | MR 0265151 | Zbl 0207.00905
[8] Truss J.: Models of set theory containing many perfect sets. Ann. Math. Logic 7 (1974), no. 2–3, 197–219. DOI 10.1016/0003-4843(74)90015-1 | MR 0369068
Partner of
EuDML logo