[1] Albrecher, H., Runggaldier, W. J., Schachermayer, W.:
Advanced Financial Modelling. Radon series on computational and applied mathematics, Walter de Gruyter, 2009.
DOI 10.1515/9783110213140 |
MR 2605639
[2] Amini, K., Ahookhosh, M., Nosratipour, H.:
An inexact line search approach using modified nonmonotone strategy for unconstrained optimization. Numer. Algor. 66 (2014), 49-78.
DOI 10.1007/s11075-013-9723-x |
MR 3197357
[3] Aniţa, S., Arnautu, V., Capasso, V.:
An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB. Birkhäuser, Boston 2011.
MR 2761466
[8] Chang, R. Y., Yang, S. Y.:
Solution of two point boundary value problems by generalized orthogonal polynomials and application to optimal control of lumped and distributed parameter systems. International Journal of Control 43 (1986), 1785-1802.
DOI 10.1080/00207178608933572 |
MR 0838620
[9] Christofides, P., Armaou, A., Lou, Y., Varshney, A.:
Control and Optimization of Multiscale Process Systems, Control Engineering. Birkhäuser, Boston 2008.
DOI 10.1007/978-0-8176-4793-3 |
MR 2489170
[10] Klerk, E. De, Roos, C., Terlaky, T.: Nonlinear Optimization. University Of Waterloo, Waterloo 2005.
[12] Haslinger, J., Neittaanmäki, P.:
Finite Element Approximation for Optimal Shape, Material and Topology Design. Wiley, 1996.
MR 1419500
[13] Heinkenschloss, M.: Numerical Solution of Implicitly Constrained Optimization Problems. CAAM Technical Report TR08-05, Rice University (2008).
[14] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.:
Optimization with PDE Constraints. Springer, Netherlands 2008.
MR 2516528
[15] Horng, I. R., Chou, J. H.:
Application of shifted Chebyshev series to the optimal control of linear distributed-parameter systems. Int. J. Control 42 (1985), 233-241.
DOI 10.1080/00207178508933359 |
MR 0802185
[16] Hu, W. W.: Approximation and Control of the Boussinesq Equations with Application to Control of Energy Efficient Building Systems. Ph.D. Thesis, Department of Mathematics, Virginia Tech. 2012.
[17] Ji, Y., Li, Y., Zhang, K., Zhan, X.:
A new nonmonotone trust-region method of conic model for solving unconstrained optimization. J. Comput. Appl. Math. 233 (2010), 1746-1754.
DOI 10.1016/j.cam.2009.09.011 |
MR 2564012
[18] Kunisch, K., Volkwein, S.:
Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102 (1999), 345-371.
DOI 10.1023/a:1021732508059 |
MR 1706822
[20] Liu, D., Nocedal, J.:
On the limited memory BFGS method for large-scale optimization. Math. Program. 45 (1989), 503-528.
DOI 10.1007/bf01589116 |
MR 1038245
[21] Merino, P.:
Finite element error estimates for an optimal control problem governed by the Burgers equation. Comput. Optim. Appl. 63 (2016), 793-824.
DOI 10.1007/s10589-015-9790-0 |
MR 3465457
[22] Meyer, C., Philip, P., Tröltzsch, F.:
Optimal control of a semilinear PDE with nonlocal radiation interface conditions. SIAM J. Control Optim. 45 (2006), 699-721.
DOI 10.1137/040617753 |
MR 2246096
[26] Nosratipour, H., Borzabadi, A. H., Fard, O. S.:
Optimal control of viscous Burgers equation via an adaptive nonmonotone Barzilai-Borwein gradient method. Int. J. Comput. Math. 95 (2018) 1858-1873.
DOI 10.1080/00207160.2017.1343472 |
MR 3817213
[28] Nosratipour, H., Fard, O. S., Borzabadi, A. H.:
An adaptive nonmonotone global Barzilai-Borwein gradient method for unconstrained optimization. Optimization 66 (2017) 641-655.
DOI 10.1080/02331934.2017.1287702 |
MR 3610318
[29] Rad, J. A., Kazem, S., Parand, K.:
Optimal control of a parabolic distributed parameter system via radial basis functions. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2559-2567.
DOI 10.1016/j.cnsns.2013.01.007 |
MR 3168052
[30] Razzaghi, M., Arabshahi, A.:
Optimal control of linear distributed-parameter systems via polynomial series. Int. J. Systems Sci. 20 (1989), 1141-1148.
DOI 10.1080/00207728908910200 |
MR 0988803
[31] Sabeh, Z., Shamsi, M., Dehghan, M.:
Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach. Math. Methods Appl. Sci. 39 (2016), 3350-3360.
DOI 10.1002/mma.3779 |
MR 3521259
[32] Strang, G., Fix, G.:
An Analysis of the Finite Element Method. Wellesley-Cambridge Press, 2008.
MR 2743037 |
Zbl 0356.65096
[33] Tröltzsch, F.:
Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Graduate studies in mathematics, American Mathematical Society, 2010.
DOI 10.1090/gsm/112 |
MR 2583281
[34] Tröltzsch, F., Volkwein, S.:
The SQP method for control constrained optimal control of the Burgers equation. ESAIM: COCV 6 (2001), 649-674.
DOI 10.1051/cocv:2001127 |
MR 1872392
[36] Yılmaz, F., Karasözen, B.:
Solving distributed optimal control problems for the unsteady Burgers equation in COMSOL multiphysics. J. Comput. Appl. Math. 235 (2011), 4839-4850.
DOI 10.1016/j.cam.2011.01.002 |
MR 2805724
[37] Zhang, H., Hager, W. W.:
A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14 (2004), 1043-1056.
DOI 10.1137/s1052623403428208 |
MR 2112963