[1] Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors. Elsevier, Amsterdam 2014.
[4] González-Hernández, J., López-Martínez, R. R., Minjárez-Sosa, J. A.:
Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion. Kybernetika 45 (2009), 737-754.
MR 2599109
[5] Gordienko, E. I., Minjárez-Sosa, J. A.:
Adaptive control for discrete-time Markov processes with unbounded costs: discounted criterion. Kybernetika 34 (1998), 217-234.
MR 1621512
[9] Hilgert, N., Minjárez-Sosa, J. A.:
Adaptive policies for time-varying stochastic systems under discounted criterion. Math. Meth. Oper. Res. 54 (2001), 3, 491-505.
DOI 10.1007/s001860100170 |
MR 1890916
[10] Hilgert, N., Minjárez-Sosa, J. A.:
Adaptive control of stochastic systems with unknown disturbance distribution: discounted criteria. Math. Meth. Oper. Res. 63 (2006), 443-460.
DOI 10.1007/s00186-005-0024-6 |
MR 2264761
[11] Hilgert, N., Senoussi, R., Vila, J. P.:
Nonparametric estimation of time-varying autoregressive nonlinear processes. C. R. Acad. Sci. Paris Série 1 1996), 232, 1085-1090.
DOI 10.1109/.2001.980647 |
MR 1423225
[12] Lewis, M. E., Paul, A.: Uniform turnpike theorems for finite Markov decision processes. Math. Oper. Res.
[13] Luque-Vásquez, F., Minjárez-Sosa, J. A.:
Semi-Markov control processes with unknown holding times distribution under a discounted criterion. Math. Meth. Oper. Res. 61 (2005), 455-468.
DOI 10.1007/s001860400406 |
MR 2225824
[14] Luque-Vásquez, F., Minjárez-Sosa, J. A., Rosas-Rosas, L. C.:
Semi-Markov control processes with partially known holding times distribution: Discounted and average criteria. Acta Appl. Math. 114 (2011), 3, 135-156.
DOI 10.1007/s10440-011-9605-y |
MR 2794078
[15] Luque-Vásquez, F., Minjárez-Sosa, J. A., Rosas-Rosas, L. C.:
Semi-Markov control processes with unknown holding times distribution under an average criterion cost. Appl. Math. Optim. Theory Appl. 61 (2010), 3, 317-336.
DOI 10.1007/s00245-009-9086-9 |
MR 2609593
[17] Minjárez-Sosa, J. A.:
Approximation and estimation in Markov control processes under discounted criterion. Kybernetika 40 (2004), 6, 681-690.
MR 2120390
[21] Robles-Alcaráz, M. T., Vega-Amaya, O., Minjárez-Sosa, J. A.:
Estimate and approximate policy iteration algorithm for discounted Markov decision models with bounded costs and Borel spaces. Risk Decision Analysis 6 (2017), 2, 79-95.
DOI 10.3233/rda-160116
[23] Schäl, M.:
Conditions for optimality and for the limit on n-stage optimal policies to be optimal. Z. Wahrs. Verw. Gerb. 32 (1975), 179-196.
DOI 10.1007/bf00532612 |
MR 0378841
[24] Shapiro, J. F.:
Turnpike planning horizon for a markovian decision model. Magnament Sci. 14 (1968), 292-300.
DOI 10.1287/mnsc.14.5.292