[1] Liu, M., Shi, P., Zhang, L., Zhao, X.:
Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique. IEEE Transa. Circuits Systems I: Regular Papers 58 (2011), 2755-2764.
DOI 10.1109/tcsi.2011.2157734 |
MR 2896078
[2] Shi, Y., Yu, B.:
Output feedback stabilization of networked control systems with random delays modeled by Markov chains. IEEE Trans. Automat. Control 54 (2009), 1668-1674.
DOI 10.1109/tac.2009.2020638 |
MR 2535768
[3] Sworder, D. D., Rogers, R. O.:
An LQ-solution to a control problem associated with a solar thermal central receiver. EEE Trans. Automat. Control 28 (1983), 971-978.
DOI 10.1109/tac.1983.1103151
[4] Shi, P., Li, F.:
A survey on Markovian jump systems: Modeling and design. Int. J. Control Automat. Systems 13 (2015), 1-16.
DOI 10.1007/s12555-014-0576-4
[5] Li, F., Shi, P., Lim, C. C., Wu, L.:
Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Systems 26 (2018), 131-141.
DOI 10.1109/tfuzz.2016.2641022
[6] Farias, D. P. De, Geromel, J. C., Val, J. B. R. Do, Costa, O. L. V.:
Output feedback control of Markov jump linear systems in continuous-time. IEEE Trans. Automat. Control 45 (2000), 944-949.
DOI 10.1109/9.855557 |
MR 1774139
[7] Shen, M., Yan, S., Zhang, G., Park, J. H.:
Finite-time $H_{\infty}$ static output control of Markov jump systems with an auxiliary approach. Appl. Math. Comput. 273 (2016), 553-561.
DOI 10.1016/j.amc.2015.10.038 |
MR 3427776
[8] Li, F., Shi, P., Lim, C. C., Wu, L.:
Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Systems 26 (2016), 131-144.
DOI 10.1109/tfuzz.2016.2641022
[10] Kao, Y., Xie, J., Wang, C.:
Stabilisation of mode-dependent singular Markovian jump systems with generally uncertain transition rates. Applied Mathematics and Computation 245 (2014), 243-254.
DOI 10.1016/j.amc.2014.06.064 |
MR 3260712
[11] Zhang, Y., Shi, Y., Shi, P.:
Robust and non-fragile finite-time $H_{\infty}$ control for uncertain Markovian jump nonlinear systems. Appl. Math. Comput. 279 (2016), 125-138.
DOI 10.1016/j.amc.2016.01.012 |
MR 3458010
[12] Wu, H., Cai, K.:
Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control. IEEE Trans. Syst., Man, Cybern.-Part B: Cybern. 36 (2006), 509-519.
DOI 10.1109/tsmcb.2005.862486
[14] Li, L., Shen, M., Zhang, G., Yan, S.:
$H_\infty$ control of Markov jump systems with time-varying delay and incomplete transition probabilities. Appl. Math. Comput. 301 (2017), 95-106.
DOI 10.1016/j.amc.2016.12.027 |
MR 3598588
[15] Li, L., Zhang, Q.:
Finite-time $H_{\infty}$ control for singular Markovian jump systems with partly unknown transition rates. Appl. Math. Modell. 40 (2016), 302-314.
DOI 10.1016/j.apm.2015.04.044 |
MR 3432088
[16] Shen, M., Zhang, G., Yuan, Y., Mei, L.:
Non-fragile sampled data $ H_\infty $ filtering of general continuous Markov jump linear systems. Kybernetika 50 (2014), 580-595.
DOI 10.14736/kyb-2014-4-0580 |
MR 3275086
[17] Niu, Y., Ho, W., Wang, X.:
Robust $ H_ {\infty} $ control for nonlinear stochastic systems: a sliding-mode approach. IEEE Trans. Automat. Control 53 (2008), 1695-1701.
DOI 10.1109/tac.2008.929376 |
MR 2446384
[19] Mobayen, S., Tchier, F.:
A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems. Kybernetika 51 (2015), 1035-1048.
DOI 10.14736/kyb-2015-6-1035 |
MR 3453684
[20] Park, P.:
A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Trans. Automat. Control 44 (1999), 876-877.
DOI 10.1109/9.754838 |
MR 1684455
[21] Fridman, E., Shaked, U.:
A descriptor system approach to $H_{\infty}$ control of linear time-delay systems. Automatica 47 (2002), 253-270.
DOI 10.1109/9.983353 |
MR 1881892
[22] Wang, L., Xie, Y., Wei, Z., Peng, J:
Stability analysis and absolute synchronization of a three-unit delayed neural network. Kybernetika 51 (2015), 800-813.
DOI 10.14736/kyb-2015-5-0800 |
MR 3445985
[24] Nirmala, R. Joice, Balachandran, K.:
Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control. Kybernetika 53 (2017), 161-178.
DOI 10.14736/kyb-2017-1-0161 |
MR 3638562
[25] Ma, Z., Sun, Y., Shi, H.:
Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation. Kybernetika 52 (2016), 607-628.
DOI 10.14736/kyb-2016-4-0607 |
MR 3565772
[26] Ma, L., Xu, M., Jia, R., Ye, H:
Exponential $ H_ {\infty} $ filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays. Kybernetika 50 (2014), 491-511.
DOI 10.14736/kyb-2014-4-0491 |
MR 3275081
[30] Kao, Y., Wang, C., Xie, J., Karimi, H. R., Li, W.:
$H_{\infty}$ sliding mode control for uncertain neutral-type stochastic systems with Markovian jumping parameters. Inform. Sci. 304 (2015), 200-211.
DOI 10.1016/j.ins.2015.03.047 |
MR 3339551
[32] Ma, L., Wang, C., Ding, S., Dong, L.:
Integral sliding mode control for stochastic Markovian jump system with time-varying delay. Neurocomputing 179 (2016), 118-125.
DOI 10.1016/j.neucom.2015.11.071
[34] Skelton, R., Iwazaki, T., Grigoriadis, K.:
A United Algebric Approach to Linear Control Design. Taylor and Francis Series in Systems and Control, 1998.
DOI 10.1002/rnc.694 |
MR 1484416