[1] Bertsekas, D., S.Shreve:
Stochastic Optimal Control: The Discrete-Time Case. Academic Press Inc 1996
MR 0511544
[2] Bauerle, N., Rieder, U.:
Markov Decision Processes with Applications to Finance. Springer, Heidelberg 2011
MR 2808878
[3] Feinberg, E.:
Continuous time discounted jump Markov decision processes: a discrete-event approach. Math. Operat. Res. 29 (2004), 492-524.
DOI 10.1287/moor.1040.0089 |
MR 2082616
[4] Guo, X. P., Hernández-Lerma, O.:
Continuous-Time Markov Decision Process: Theorey and Applications. Springer-Verlag, Berlin 2009.
MR 2554588
[5] Guo, X. P., Hernández-Del-Valle, A., Hernández-Lerma, O.:
First passage problems for nonstationary discrete-time stochastic control systems. Europ. J. Control 18 (2012), 528-538.
DOI 10.3166/ejc.18.528-538 |
MR 3086896
[6] Guo, X. P., Song, X. Y., Zhang, Y.:
First passage optimality for continuous time Markov decision processes with varying discount factors and history-dependent policies. IEEE Trans. Automat. Control 59 (2014), 163-174.
DOI 10.1109/tac.2013.2281475 |
MR 3163332
[7] Guo, X. P., Huang, X. X., Huang, Y. H.:
Finite-horizon optimality for continuous-time Markov decision processs with unbounded transition rates. Adv. Appl. Prob. 47 (2015), 1064-1087.
DOI 10.1017/s0001867800049016 |
MR 3433296
[11] Huang, Y. H., Guo, X. P.:
First passage models for denumberable Semi-Markov processes with nonnegative discounted cost. Acta. Math. Appl. Sinica 27 (2011), 177-190.
DOI 10.1007/s10255-011-0061-2 |
MR 2784052
[13] Huang, Y. H., Guo, X. P., Li, Z. F.:
Minimum risk probability for finite horizon semi-Markov decision process. J. Math. Anal. Appl. 402 (2013), 378-391.
DOI 10.1016/j.jmaa.2013.01.021 |
MR 3023265
[14] Huang, X. X., Zou, X. L., Guo, X. P.:
A minimization problem of the risk probability in first passage semi-Markov decision processes with loss rates. Sci. China Math. 58 (2015), 1923-1938.
DOI 10.1007/s11425-015-5029-x |
MR 3383991
[16] Huo, H. F., Zou, X. L., Guo, X. P.:
The risk probability criterion for discounted continuous-time Markov decision processes. Discrete Event Dynamic system: Theory Appl. 27 (2017), 675-699.
DOI 10.1007/s10626-017-0257-6 |
MR 3712415
[17] Janssen, J., Manca, R.:
Semi-Markov Risk Models For Finance, Insurance, and Reliability. Springer, New York 2006.
MR 2301626
[18] Lin, Y. L., Tomkins, R. J., Wang, C. L.:
Optimal models for the first arrival time distribution function in continuous time with a special case. Acta. Math. Appl. Sinica 10 (1994), 194-212.
DOI 10.1007/bf02006119 |
MR 1289720
[19] Liu, J. Y., Liu, K.:
Markov decision programming - the first passage model with denumerable state space. Systems Sci. Math. Sci. 5 (1992), 340-351.
MR 1196196
[20] Liu, J. Y., Huang, S. M.:
Markov decision processes with distribution function criterion of first-passage time. Appl. Math. Optim. 43 (2001), 187-201.
DOI 10.1007/s00245-001-0007-9 |
MR 1885696
[22] Puterman, M. L.:
Markov Decision Processes: Discrete Stochastic Dynamic Programming.
MR 1270015
[23] Piunovskiy, A., Zhang, Y.:
Discounted continuous-time Markov decision processes with unbounded rates: the convex analytic approach. SIAM J. Control Optim. 49 (2011), 2032-2061.
DOI 10.1137/10081366x |
MR 2837510
[25] Wu, C. B., Lin, Y. L.:
Minimizing risk models in Markov decision processes with policies depending on target values. J. Math. Anal. Appl. 231 (1999), 47-57.
DOI 10.1006/jmaa.1998.6203 |
MR 1676741
[26] Wu, X., Guo, X. P.:
First passage optimality and variance minimization of Markov decision processes with varying discount factors. J. Appl. Prob. 52 (2015), 441-456.
DOI 10.1017/s0021900200012560 |
MR 3372085
[27] Yu, S. X., Lin, Y. L., Yan, P. F.:
Optimization models for the first arrival target distribution function in discrete time. J. Math. Anal. Appl. 225 (1998), 193-223.
DOI 10.1006/jmaa.1998.6015 |
MR 1639236
[28] Zou, X. L., Guo, X. P.:
Another set of verifiable conditions for average Markov decision processes with Borel spaces. Kybernetika 51 (2015), 276-292.
DOI 10.14736/kyb-2015-2-0276 |
MR 3350562