Previous |  Up |  Next

Article

Keywords:
Horizontal lift; vertical lift; Mus-Sasaki metric; scalar curvature.
Summary:
In this paper, we introduce the Mus-Sasaki metric on the tangent bundle $TM$ as a new natural metric non-rigid on $TM$. First we investigate the geometry of the Mus-Sasakian metrics and we characterize the sectional curvature and the scalar curvature.
References:
[1] Abbassi, M.T.K., Sarih, M.: On Natural Metrics on Tangent Bundles of Riemannian Manifolds. Archivum Mathematicum, 41, 2005, 71-92, MR 2142144
[2] Cengiz, N., Salimov, A.A.: Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput., 142, 2--3, 2003, 309-319, MR 1979438
[3] Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. of Math., 96, 2, 1972, 413-443, DOI 10.2307/1970819 | MR 0309010 | Zbl 0246.53049
[4] Djaa, M., Djaa, N.E.H., Nasri, R.: Natural Metrics on $T^{2}M$ and Harmonicity. International Electronic Journal of Geometry, 6, 1, 2013, 100-111, MR 3048524
[5] Djaa, M., Gancarzewicz, J.: The geometry of tangent bundles of order r. Boletin Academia, Galega de Ciencias, 4, 1985, 147-165, MR 0908354
[6] Djaa, N.E.H., Ouakkas, S., Djaa, M.: Harmonic sections on the tangent bundle of order two. Annales Mathematicae et Informaticae, 38, 2011, 15-25, MR 2872181
[7] Dombrowski, P.: On the Geometry of the Tangent Bundle. J. Reine Angew. Math., 210, 1962, 73-88, MR 0141050
[8] Gezer, A.: On the Tangent Bundle With Deformed Sasaki Metric. International Electronic Journal of Geometry, 6, 2, 2013, 19-31, MR 3125828
[9] Gudmundsson, S., Kappos, E.: On the Geometry of the Tangent Bundle with the Cheeger-Gromoll Metric. Tokyo J. Math., 25, 1, 2002, 75-83, DOI 10.3836/tjm/1244208938 | MR 1908215
[10] Sekizawa, O. Kowalski and M.: On Riemannian Geometry Of Tangent Sphere Bundles With Arbitrary Constant Radius. Archivum Mathematicum, 44, 2008, 391-401, MR 2501575
[11] Musso, E., Tricerri, F.: Riemannian Metrics on Tangent Bundles. Ann. Mat. Pura Appl., 150, 4, 1988, 1-19, DOI 10.1007/BF01761461 | MR 0946027
[12] Salimov, A.A., Agca, F.: Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of Mathematics, 8, 2, 2011, 243-255, MR 2802327
[13] Salimov, A.A, Gezer, A.: On the geometry of the $(1, 1$)-tensor bundle with Sasaki type metric. Chinese Annals of Mathematics, 32, 3, 2011, 369-386, DOI 10.1007/s11401-011-0646-3 | MR 2805406
[14] Salimov, A.A., Gezer, A., Akbulut, K.: Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math, 6, 2, 2009, 135-147, DOI 10.1007/s00009-009-0001-z | MR 2516246
[15] Salimov, A.A., Kazimova, S.: Geodesics of the Cheeger-Gromoll Metric. Turk. J. Math., 33, 2009, 99-105, MR 2524119
[16] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds II. Tohoku Math. J., 14, 1962, 146-155, DOI 10.2748/tmj/1178244169 | MR 0145456
[17] Sekizawa, M.: Curvatures of Tangent Bundles with Cheeger-Gromoll Metric. Tokyo J. Math., 14, 2, 1991, 407-417, DOI 10.3836/tjm/1270130381 | MR 1138176
[18] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. 1973, Marcel Dekker. INC., New York, MR 0350650 | Zbl 0262.53024
Partner of
EuDML logo