[1] Abbassi, M.T.K., Sarih, M.:
On Natural Metrics on Tangent Bundles of Riemannian Manifolds. Archivum Mathematicum, 41, 2005, 71-92,
MR 2142144
[2] Cengiz, N., Salimov, A.A.:
Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput., 142, 2--3, 2003, 309-319,
MR 1979438
[4] Djaa, M., Djaa, N.E.H., Nasri, R.:
Natural Metrics on $T^{2}M$ and Harmonicity. International Electronic Journal of Geometry, 6, 1, 2013, 100-111,
MR 3048524
[5] Djaa, M., Gancarzewicz, J.:
The geometry of tangent bundles of order r. Boletin Academia, Galega de Ciencias, 4, 1985, 147-165,
MR 0908354
[6] Djaa, N.E.H., Ouakkas, S., Djaa, M.:
Harmonic sections on the tangent bundle of order two. Annales Mathematicae et Informaticae, 38, 2011, 15-25,
MR 2872181
[7] Dombrowski, P.:
On the Geometry of the Tangent Bundle. J. Reine Angew. Math., 210, 1962, 73-88,
MR 0141050
[8] Gezer, A.:
On the Tangent Bundle With Deformed Sasaki Metric. International Electronic Journal of Geometry, 6, 2, 2013, 19-31,
MR 3125828
[10] Sekizawa, O. Kowalski and M.:
On Riemannian Geometry Of Tangent Sphere Bundles With Arbitrary Constant Radius. Archivum Mathematicum, 44, 2008, 391-401,
MR 2501575
[12] Salimov, A.A., Agca, F.:
Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of Mathematics, 8, 2, 2011, 243-255,
MR 2802327
[13] Salimov, A.A, Gezer, A.:
On the geometry of the $(1, 1$)-tensor bundle with Sasaki type metric. Chinese Annals of Mathematics, 32, 3, 2011, 369-386,
DOI 10.1007/s11401-011-0646-3 |
MR 2805406
[14] Salimov, A.A., Gezer, A., Akbulut, K.:
Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math, 6, 2, 2009, 135-147,
DOI 10.1007/s00009-009-0001-z |
MR 2516246
[15] Salimov, A.A., Kazimova, S.:
Geodesics of the Cheeger-Gromoll Metric. Turk. J. Math., 33, 2009, 99-105,
MR 2524119
[18] Yano, K., Ishihara, S.:
Tangent and Cotangent Bundles. 1973, Marcel Dekker. INC., New York,
MR 0350650 |
Zbl 0262.53024