Previous |  Up |  Next

Article

Keywords:
Contact metric manifold; curvature tensor; Ricci tensor; Ricci operator.
Summary:
In this paper we study $\phi $-recurrence $\tau $-curvature tensor in\\ $(k,\mu )$-contact metric manifolds.
References:
[1] Blair, D.E.: Contact metric manifolds in Riemannian geometry. 1976, Springer-Verlag, Berlin-New-York, Lecture Notes in Mathematics 509. DOI 10.1007/BFb0079308 | MR 0467588
[2] Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math., 91, 1995, 189-214, DOI 10.1007/BF02761646 | MR 1348312 | Zbl 0837.53038
[3] Boeckx, E., Buecken, P., Vanhecke, L.: $\phi $-symmetric contact metric spaces. Glasgow Math. J., 41, 1999, 409-416, DOI 10.1017/S0017089599000579 | MR 1720426
[4] De, U.C., Gazi, A.K.: On $\phi $-recurrent $N(k)$-contact metric manifolds. Math. J. Okayama Univ., 50, 2008, 101-112, MR 2376549
[5] De, U.C., Shaikh, A.A., Biswas, S.: On $\phi $-recurrent Sasakian manifolds. Novi Sad J. Math., 33, 2003, 13-48, MR 2046161
[6] Nagaraja, H.G., Somashekhara, G.: $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds. Mathematica Aeterna, 2, 6, 2012, 523-532, MR 2969174
[7] Papantonion, B.J.: Contact Riemannian manifolds satisfying $R(\xi ,X)\cdot R=0$ and $\xi \in (k,\mu )$-nullity distribution. Yokohama Math. J., 40, 2, 1993, 149-161, MR 1216349
[8] Premalatha, C.R., Nagaraja, H.G.: On Generalized $(k,\mu )$-space forms. Journal of Tensor Society, 7, 2013, 29-38, MR 3676345
[9] Shaikh, A.A., Baishya, K.K.: On $(k,\mu )$-contact metric manifolds. Differential Geometry - Dynamical Systems, 8, 2006, 253-261, MR 2220732
[10] Sharma, R., Blair, D.E.: Conformal motion of contact manifolds with characteristic vector field in the $k$-nullity distribution. Illinois J. Math., 42, 1998, 673-677, DOI 10.1215/ijm/1255985467 | MR 1649889
[11] Tanno, S.: Ricci curvatures of contact Riemannian manifolds. Tohoku Math. J., 40, 1988, 441-448, DOI 10.2748/tmj/1178227985 | MR 0957055 | Zbl 0655.53035
[12] Takahashi, T.: Sasakian $\phi $-symmetric spaces. Tohoku Math. J., 29, 1977, 91-113, DOI 10.2748/tmj/1178240699 | MR 0440472
[13] Tripathi, M.M., Gupta, P.: $\tau $-curvature tensor on a semi-Riemannian manifold. J. Adv. Math. Stud., 4, 1, 2011, 117-129, MR 2808047
[14] Tripathi, M.M., Gupta, P.: On $\tau $-curvature tensor in K-contact and Sasakian manifolds. International Electronic Journal of Geometry, 4, 2011, 32-47, MR 2801462
[15] Tripathi, M.M., Gupta, P.: $(N(k),\xi )$-semi-Riemannian manifolds: Semisymmetries. arXiv:1202.6138v[math.DG], 28, 2012, MR 2915487
Partner of
EuDML logo