[1] Blair, D.E.:
Contact metric manifolds in Riemannian geometry. 1976, Springer-Verlag, Berlin-New-York, Lecture Notes in Mathematics 509.
DOI 10.1007/BFb0079308 |
MR 0467588
[4] De, U.C., Gazi, A.K.:
On $\phi $-recurrent $N(k)$-contact metric manifolds. Math. J. Okayama Univ., 50, 2008, 101-112,
MR 2376549
[5] De, U.C., Shaikh, A.A., Biswas, S.:
On $\phi $-recurrent Sasakian manifolds. Novi Sad J. Math., 33, 2003, 13-48,
MR 2046161
[6] Nagaraja, H.G., Somashekhara, G.:
$\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds. Mathematica Aeterna, 2, 6, 2012, 523-532,
MR 2969174
[7] Papantonion, B.J.:
Contact Riemannian manifolds satisfying $R(\xi ,X)\cdot R=0$ and $\xi \in (k,\mu )$-nullity distribution. Yokohama Math. J., 40, 2, 1993, 149-161,
MR 1216349
[8] Premalatha, C.R., Nagaraja, H.G.:
On Generalized $(k,\mu )$-space forms. Journal of Tensor Society, 7, 2013, 29-38,
MR 3676345
[9] Shaikh, A.A., Baishya, K.K.:
On $(k,\mu )$-contact metric manifolds. Differential Geometry - Dynamical Systems, 8, 2006, 253-261,
MR 2220732
[10] Sharma, R., Blair, D.E.:
Conformal motion of contact manifolds with characteristic vector field in the $k$-nullity distribution. Illinois J. Math., 42, 1998, 673-677,
DOI 10.1215/ijm/1255985467 |
MR 1649889
[13] Tripathi, M.M., Gupta, P.:
$\tau $-curvature tensor on a semi-Riemannian manifold. J. Adv. Math. Stud., 4, 1, 2011, 117-129,
MR 2808047
[14] Tripathi, M.M., Gupta, P.:
On $\tau $-curvature tensor in K-contact and Sasakian manifolds. International Electronic Journal of Geometry, 4, 2011, 32-47,
MR 2801462
[15] Tripathi, M.M., Gupta, P.:
$(N(k),\xi )$-semi-Riemannian manifolds: Semisymmetries. arXiv:1202.6138v[math.DG], 28, 2012,
MR 2915487