[1] Bezverkhnyev, Y.:
Haruki’s lemma and a related locus problem. Forum Geom. 8 (2008), 63–72.
MR 2429392
[5] Celli, M.:
A proof of the butterfly theorem using the similarity factor of the two wings. Forum Geom. 16 (2016), 337–338.
MR 3567316
[6] Coxeter, H. S. M., Greitzer, S. L.:
Geometry revisited. Mathematical Association of America, Washington, 1967.
MR 3155265
[8] Čerin, Z.:
A generalization of the butterfly theorem from circles to conics. Math. Commun. 6 (2001), 161–164.
MR 1908335
[9] Donaldo, C.:
A proof of the butterfly theorem using Ceva’s theorem. Forum Geom. 16 (2016), 185–186.
MR 3499737
[12] Prasolov, V. V.: Problems in planimetry. Nauka, Moscow, 1986.
[13] Shklyarsky, O., Chentsov, N. N., Yaglom, I. M.: Selected problems and theorems of elementary mathematics. Moscow, 1952.
[14] Sledge, J.: A generalization of the butterfly theorem. J. Undergraduate Math. 5 (1973), 3–4.
[15] Sliepčević, A.:
A new generalization of the butterfly theorem. J. Geom. Graph. 6 (2002), 61–68.
MR 1953134
[16] Štěpánová, M.: Věta o motýlech. In: Cesty k matematice III, Hromadová, J., Slavík, A. (eds.), MatfyzPress, Praha, 2018, 103–124.
[18] Volenec, V.:
A generalization of the butterfly theorem. Math. Commun. 5 (2000), 157–160.
MR 1816270
[19] Volenec, V.:
The butterfly theorem for conics. Math. Commun. 7 (2002), 35–38.
MR 1932541