[1] Alberts, B.: Molecular biology of the cell. 6th ed., Garland Science, New York and Abingdon, 2014.
[3] Andresen, M.:
Structural basis for reversible photoswitching in Dronpa. Proc. Natl. Acad. Sci. USA 104 (2007), 13005–13009.
DOI 10.1073/pnas.0700629104
[4] Arai, Y., Nagai, T.:
Extensive use of FRET in biological imaging. Microscopy 62 (2013), 419–428.
DOI 10.1093/jmicro/dft037
[5] Betzig, E.:
Imaging intracellular fluorescent proteins at nanometer resolution. Science 313 (2006), 1642–1645.
DOI 10.1126/science.1127344
[6] Carisey, A.: Fluorescence recovery after photobleaching. In: Cell Migration Methods in Molecular Biology (Methods and Protocols), Humana Press, 2011.
[7] Cody, C.:
Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32 (1993), 1212–1218.
DOI 10.1021/bi00056a003
[9] Černý, J.: Zelený fluorescenční protein. Vesmír 88 (2009), 228–231.
[10] Day, R. N., Davidson, M. W.:
The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38 (2009), 2887–2921.
DOI 10.1039/b901966a
[11] Ehrenberg, M.: Scientific background on the Nobel Prize in chemistry 2008. The Royal Swedish Academy of Sciences, Stockholm, 2008.
[12] Heim, R., Cubitt, A. B., Tsien, R. Y.:
Improved green fluorescence. Nature 373 (1995), 663–664.
DOI 10.1038/373663b0
[13] Heim, R., Prasher, D. C., Tsien, R. Y.:
Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91 (1994), 12501–12504.
DOI 10.1073/pnas.91.26.12501
[16] Chudakov, D. M.:
Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90 (2010), 1103–1163.
DOI 10.1152/physrev.00038.2009
[17] Kanehira, K., Uchida, Y., Saito, T.:
Visualization of avian influenza virus infected cells using self-assembling fragments of green fluorescent protein. Electron. J. Biotechnol. 19 (2016), 61–64.
DOI 10.1016/j.ejbt.2015.08.008
[19] Kiyonaka, S.:
Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods 10 (2013), 1232–1238.
DOI 10.1038/nmeth.2690
[20] Koldenkova, V. P., Nagai, T.:
Genetically encoded Ca$^{2+}$ indicators: Properties and evaluation. Biochim. Biophys. Acta 1833 (2013), 1787–1797.
DOI 10.1016/j.bbamcr.2013.01.011
[21] Labas, Y. A.:
Diversity and evolution of the green fluorescent protein family. Proc. Natl. Acad. Sci. USA 99 (2002), 4256–4261.
DOI 10.1073/pnas.062552299
[22] Lakowicz, J. R.: Principles of fluorescence spectroscopy. Springer US, Boston, 2006.
[23] Lippincott-Schwartz, J., Patterson, G. H.:
Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 19 (2009), 555–565.
DOI 10.1016/j.tcb.2009.09.003
[24] Livet, J.:
Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450 (2007), 56–62.
DOI 10.1038/nature06293
[25] Lukyanov, K. A.:
Photoactivatable fluorescent proteins. Nat. Rev. Mol. Cell Biol. 6 (2005), 885–891.
DOI 10.1038/nrm1741
[26] Martynov, V. I.:
Genetically encoded fluorescent indicators for live cell pH imaging. Biochim. Biophys. Acta 1862 (2018), 2924–2939.
DOI 10.1016/j.bbagen.2018.09.013
[27] Merola, F.:
Engineering fluorescent proteins towards ultimate performances: lessons from the newly developed cyan variants. Methods Appl. Fluoresc. 4 (2016), [online] 012001.
DOI 10.1088/2050-6120/4/1/012001
[28] Miesenbock, G., De Angelis, D. A., Rothman, J. E.:
Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394 (1998), 192–195.
DOI 10.1038/28190
[30] Miyawaki, A.:
Fluorescent indicators for Ca$^{2+}$ based on green fluorescent proteins and calmodulin. Nature 388 (1997), 882–887.
DOI 10.1038/42264
[31] Morise, H.:
Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13 (1974), 2656–2662.
DOI 10.1021/bi00709a028
[32] Orij, R.:
In vivo measurement of cytosolic and mitochondrial pH using a pHsensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155 (2009), 268–278.
DOI 10.1099/mic.0.022038-0
[34] Plášek, J.: Optická mikroskopie od van Leeuwenhoeka k Nobelově ceně za chemii v roce 2014. Čs. čas. fyz. 65 (2015), 365–369.
[35] Plášek, J.: Superrozlišení v optické mikroskopii: Nobelova cena za chemii za rok 2014. Pokroky Mat. Fyz. Astronom. 60 (2015), 19–38.
[36] Reits, E. A. J., Neefjes, J. J.:
From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3 (2001), E145–E147.
DOI 10.1038/35078615
[37] Roda, A.: Discovery and development of the green fluorescent protein, GFP: the 2008 Nobel Prize. Anal. Bioanal. Chem. 396 (2010), 1619–1622.
[38] San Pietro, R. M., Prendergast, F. G., Ward, W. W.: Sequence of the chromogenic hexapeptide of Renilla green fluorescent protein. Photochem. Photobiol. 57 (1993), S63.
[39] Shaner, N. C.:
Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat. Biotechnol. 22 (2004), 1567–1572.
DOI 10.1038/nbt1037
[40] Shaner, N. C., Steinbach, P. A., Tsien, R. Y.:
A guide to choosing fluorescent proteins. Nat. Methods 2 (2005), 905–909.
DOI 10.1038/nmeth819
[41] Shimizu, K.:
Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology. Bioinspir. Biomim. 13 (2018), 041003.
DOI 10.1088/1748-3190/aabbe9
[45] Tsien, R. Y.:
Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 48 (2009), 5612–5626.
DOI 10.1002/anie.200901916
[47] Verkhusha, V. V.:
Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem. Biol. 11 (2004), 845–854.
DOI 10.1016/j.chembiol.2004.04.007
[48] Wallrabe, H., Periasamy, A.:
Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16 (2005), 19–27.
DOI 10.1016/j.copbio.2004.12.002
[49] Wan, H. Y.:
Generation of two-color transgenic zebrafish using the green and red fluorescent protein reporter genes gfp and rfp. Mar. Biotechnol. 4 (2002), 146–154.
DOI 10.1007/s10126-001-0085-3
[50] Wang, Y. X., Shyy, J. Y. J., Chien, S.:
Fluorescence proteins, live-cell imaging, and mechanobiology: Seeing is believing. Annu. Rev. Biomed. Eng. 10 (2008), 1–38.
DOI 10.1146/annurev.bioeng.010308.161731
[51] Ward, W. W.:
Spectrophotometric identity of the energy-transfer chromophores in Renilla and Aequorea green-fluorescent protein. Photochem. Photobiol. 31 (1980), 611–615.
DOI 10.1111/j.1751-1097.1980.tb03755.x
[52] Warner, K. D.:
Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21 (2014), 658–663.
DOI 10.1038/nsmb.2865
[53] Weissman, T. A., Pan, Y. A.:
Brainbow: New resources and emerging biological applications for multicolor genetic labeling and analysis. Genetics 199 (2015), 293–306.
DOI 10.1534/genetics.114.172510
[54] Yang, F., Moss, L. G., Phillips, G. N.:
The molecular structure of green fluorescent protein. Nat. Biotechnol. 14 (1996), 1246–1251.
DOI 10.1038/nbt1096-1246
[55] Zimmer, M.: Green fluorescent protein: (GFP): Applications, structure, and related photophysical behavior. Chem. Rev. 102 (2002), 759–781.
[56] Zimmer, M.:
GFP – from jellyfish to the Nobel prize and beyond. Chem. Soc. Rev. 38 (2009), 2823–2832.
DOI 10.1039/b904023d