Previous |  Up |  Next

Article

Keywords:
asymptotic zero-distribution; hypergeometric polynomial; saddle point method
Summary:
We prove that as $n\to \infty $, the zeros of the polynomial $$ _{2}{F}_{1}\left [ \begin {matrix} -n, \alpha n+1\\ \alpha n+2 \end {matrix} ; z\right ] $$ cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al.\ (1999--2001) to the case of a complex parameter $\alpha $ and partially proves a conjecture made by the authors in an earlier work.
References:
[1] Abathun, A., Bøgvad, R.: Asymptotic distribution of zeros of a certain class of hypergeometric polynomials. Comput. Methods Funct. Theory 16 (2016), 167-185. DOI 10.1007/s40315-015-0131-1 | MR 3503349 | Zbl 1339.33009
[2] Andrews, G. E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications 71, Cambridge University Press, Cambridge (1999). DOI 10.1017/CBO9781107325937 | MR 1688958 | Zbl 0920.33001
[3] Bleistein, N.: Mathematical Methods for Wave Phenomena. Computer Science and Applied Mathematics, Academic Press, Orlando (1984). DOI 10.1016/B978-0-08-091695-8.50001-7 | MR 0755514 | Zbl 0554.35002
[4] Boggs, K., Duren, P.: Zeros of hypergeometric functions. Comput. Methods Funct. Theory 1 (2001), 275-287. DOI 10.1007/BF03320990 | MR 1931616 | Zbl 1009.33004
[5] Borcea, J., Bøgvad, R., Shapiro, B.: Homogenized spectral problems for exactly solvable operators: asymptotics of polynomial eigenfunctions. Publ. Res. Inst. Math. Sci. 45 (2009), 525-568 corrigendum ibid. 48 2012 229-233. DOI 10.2977/prims/1241553129 | MR 2510511 | Zbl 1182.30008
[6] Bruijn, N. G. de: Asymptotic Methods in Analysis. Bibliotheca Mathematica 4, North-Holland Publishing, Amsterdam (1961). MR 0177247 | Zbl 0109.03502
[7] Driver, K., Duren, P.: Asymptotic zero distribution of hypergeometric polynomials. Numer. Algorithms 21 (1999), 147-156. DOI doi.org/10.1023/A:1019197027156 | MR 1725722 | Zbl 0935.33004
[8] Duren, P. L., Guillou, B. J.: Asymptotic properties of zeros of hypergeometric polynomials. J. Approximation Theory 111 (2001), 329-343. DOI 10.1006/jath.2001.3580 | MR 1849553 | Zbl 0983.33008
Partner of
EuDML logo