Previous |  Up |  Next

Article

Keywords:
generalized Orlicz space; Musielak-Orlicz space; nonstandard growth; variable exponent; double phase; uniform convexity; associate space
Summary:
We prove that the associate space of a generalized Orlicz space $L^{\phi (\cdot )}$ is given by the conjugate modular $\phi ^*$ even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling $\Phi $-function is equivalent to a doubling $\Phi $-function. As a consequence, we conclude that $L^{\phi (\cdot )}$ is uniformly convex if $\phi $ and $\phi ^*$ are weakly doubling.
References:
[1] Adams, R.: Sobolev Spaces. Pure and Applied Mathematics 65, Academic Press, New York (1975). MR 0450957 | Zbl 0314.46030
[2] Avci, M., Pankov, A.: Multivalued elliptic operators with nonstandard growth. Adv. Nonlinear Anal. 7 (2018), 35-48. DOI 10.1515/anona-2016-0043 | MR 3757454 | Zbl 06837817
[3] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St. Petersbg. Math. J. 27 (2016), 347-379 translation from Algebra Anal. 27 2015 6-50. DOI 10.1090/spmj/1392 | MR 3570955 | Zbl 1335.49057
[4] Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215 (2015), 443-496. DOI 10.1007/s00205-014-0785-2 | MR 3294408 | Zbl 1322.49065
[5] Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in generalized Orlicz spaces. Trans. Am. Math. Soc. 370 (2018), 4323-4349. DOI 10.1090/tran/7155 | MR 3811530 | Zbl 06853979
[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017, Springer, Berlin (2011). DOI 10.1007/978-3-642-18363-8 | MR 2790542 | Zbl 1222.46002
[7] Fan, X.-L., Guan, C.-X.: Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications. Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 163-175. DOI 10.1016/j.na.2010.03.010 | MR 2645841 | Zbl 1198.46010
[8] Gwiazda, P., Wittbold, P., Wróblewska-Kamińska, A., Zimmermann, A.: Renormalized solutions to nonlinear parabolic problems in generalized Musielak-Orlicz spaces. Nonlinear Anal., Theory Methods Appl., Ser. A 129 (2015), 1-36. DOI 10.1016/j.na.2015.08.017 | MR 3414919 | Zbl 1331.35173
[9] Harjulehto, P., Hästö, P.: Riesz potential in generalized Orlicz spaces. Forum Math. 29 (2017), 229-244. DOI 10.1515/forum-2015-0239 | MR 3592600
[10] Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE. Nonlinear Anal., Theory Methods Appl., Ser. A 143 (2016), 155-173. DOI 10.1016/j.na.2016.05.002 | MR 3516828 | Zbl 1360.46029
[11] Harjulehto, P., Hästö, P., Toivanen, O.: Hölder regularity of quasiminimizers under generalized growth conditions. Calc. Var. Partial Differ. Equ. 56 (2017), Article No. 2, 26 pages. DOI 10.1007/s00526-017-1114-z | MR 3606780 | Zbl 1366.35036
[12] Hästö, P.: The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 269 (2015), 4038-4048. DOI 10.1016/j.jfa.2015.10.002 | MR 3418078 | Zbl 1338.47032
[13] Hudzik, H.: Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 23 (1983), 21-32. MR 0709167 | Zbl 0595.46027
[14] Hudzik, H.: A criterion of uniform convexity of Musielak-Orlicz spaces with Luxemburg norm. Bull. Pol. Acad. Sci., Math. 32 (1984), 303-313. MR 0785989 | Zbl 0565.46020
[15] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137 (2013), 76-96. DOI 10.1016/j.bulsci.2012.03.008 | MR 3007101 | Zbl 1267.46045
[16] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034, Springer, Berlin (1983). DOI 10.1007/BFb0072210 | MR 0724434 | Zbl 0557.46020
[17] Ok, J.: Gradient estimates for elliptic equations with $L^{p(\cdot)}\log L$ growth. Calc. Var. Partial Differ. Equ. 55 (2016), Article No. 26, 30 pages. DOI 10.1007/s00526-016-0965-z | MR 3465442 | Zbl 1342.35090
[18] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure and Applied Mathematics 146, Marcel Dekker, New York (1991). MR 1113700 | Zbl 0724.46032
Partner of
EuDML logo